Table of Contents

<table>
<thead>
<tr>
<th>Page</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6" Straight Block ...1</td>
</tr>
<tr>
<td>1A</td>
<td>4" Straight Block ...2</td>
</tr>
<tr>
<td>2</td>
<td>6" Angle Blocks ..3</td>
</tr>
<tr>
<td>2A</td>
<td>4" Angle Blocks ..4</td>
</tr>
<tr>
<td>3</td>
<td>8" Straight Block ...5</td>
</tr>
<tr>
<td>4</td>
<td>8" Angle Blocks ..6</td>
</tr>
<tr>
<td>4A</td>
<td>8" Knockdown Straight Blocks7</td>
</tr>
<tr>
<td>4B</td>
<td>10" Knockdown Straight Blocks8</td>
</tr>
<tr>
<td>4C</td>
<td>12" Knockdown Straight Blocks9</td>
</tr>
<tr>
<td>4D</td>
<td>10" Knockdown 90° Corner Block10</td>
</tr>
<tr>
<td>4E</td>
<td>12" Knockdown 90° Corner Block11</td>
</tr>
<tr>
<td>5</td>
<td>6" Ledge Block ..12</td>
</tr>
<tr>
<td>5A</td>
<td>8" Ledge Block ..13</td>
</tr>
<tr>
<td>5A1</td>
<td>8" Ledge Block Stirrup Reinforcement14</td>
</tr>
<tr>
<td>5A2</td>
<td>6" Ledge Block Stirrup Reinforcement15</td>
</tr>
<tr>
<td>5B</td>
<td>6" Taper Top Block ..16</td>
</tr>
<tr>
<td>5C</td>
<td>8" Taper Top Block ..17</td>
</tr>
<tr>
<td>5D</td>
<td>BuildDeck 8" ..18</td>
</tr>
<tr>
<td>5E</td>
<td>BuildDeck 10" ...19</td>
</tr>
<tr>
<td>5F</td>
<td>BuildDeck 12" ...20</td>
</tr>
<tr>
<td>5G</td>
<td>BuildDeck 12" + 2" Foam Top Hat21</td>
</tr>
<tr>
<td>5H</td>
<td>BuildDeck 12" + 4" Foam Top Hat22</td>
</tr>
<tr>
<td>5I</td>
<td>BuildDeck 12" + 6" Foam Top Hat23</td>
</tr>
<tr>
<td>5J</td>
<td>BuildDeck 12" + 8" Foam Top Hat24</td>
</tr>
<tr>
<td>5K</td>
<td>BuildDeck Long Span Stirrups25</td>
</tr>
<tr>
<td>6</td>
<td>1-Story Brick Veneer ...26</td>
</tr>
<tr>
<td>7</td>
<td>1-Story Stucco ...27</td>
</tr>
<tr>
<td>8</td>
<td>1-Story Siding ...28</td>
</tr>
<tr>
<td>9</td>
<td>Wood Frame on BuildBlock Stem29</td>
</tr>
<tr>
<td>10</td>
<td>BuildBlock Stem & Crawl Space30</td>
</tr>
<tr>
<td>11</td>
<td>BuildBlock Stem & Log Wall ..31</td>
</tr>
<tr>
<td>11A</td>
<td>BuildBlock Stem & Log Wall ..32</td>
</tr>
<tr>
<td>12</td>
<td>BuildBlock Basement & Log Wall33</td>
</tr>
<tr>
<td>12A</td>
<td>Basement, Taper Unit & Log Wall34</td>
</tr>
<tr>
<td>13</td>
<td>Basement With Brick 1 or 2 Story BuildBlock Above35</td>
</tr>
<tr>
<td>13A</td>
<td>Basement With Stucco 1 or 2 Stories Above36</td>
</tr>
<tr>
<td>13B</td>
<td>Wall Detail W/Sill Plate & Slope Roof37</td>
</tr>
<tr>
<td>13C</td>
<td>Basement With Siding on One Story BuildBlock and Second Floor Frame Above38</td>
</tr>
<tr>
<td>13D</td>
<td>Basement With 1 or 2 Story BuildBlock Above39</td>
</tr>
<tr>
<td>14</td>
<td>BuildBlock 6" Typical Floor Intersections40</td>
</tr>
<tr>
<td>14A</td>
<td>Frame Floor Top Bearing ...41</td>
</tr>
<tr>
<td>14B</td>
<td>BuildBlock 8" Typical Floor Wall Intersections42</td>
</tr>
<tr>
<td>15</td>
<td>Simpson ICF Connectors ...43</td>
</tr>
<tr>
<td>15A</td>
<td>Simpson ICF Connectors ...44</td>
</tr>
<tr>
<td>15B</td>
<td>Simpson ICF Connectors ...45</td>
</tr>
<tr>
<td>15C</td>
<td>Simpson ICF Connectors ...46</td>
</tr>
<tr>
<td>15D</td>
<td>Simpson ICF Connectors ...47</td>
</tr>
<tr>
<td>15E</td>
<td>Simpson ICF Connectors ...48</td>
</tr>
<tr>
<td>15F</td>
<td>Simpson ICF Connectors ...49</td>
</tr>
<tr>
<td>16</td>
<td>BuildBlock 6" Ledge Block Application 150</td>
</tr>
<tr>
<td>17</td>
<td>BuildBlock 8" Ledge Block Application 251</td>
</tr>
<tr>
<td>18</td>
<td>BuildBlock 6" & 8" Ledge Block Application 352</td>
</tr>
<tr>
<td>19</td>
<td>BuildBlock 6" & 8" Masonry Ledge Form Details53</td>
</tr>
<tr>
<td>20</td>
<td>BuildBlock Basement Foundation54</td>
</tr>
<tr>
<td>21</td>
<td>BuildBlock Basement & Wood Frame55</td>
</tr>
<tr>
<td>22</td>
<td>Frame Sole Plate Intersection56</td>
</tr>
<tr>
<td>23</td>
<td>Wood Frame Stucco on BuildBlock Basement57</td>
</tr>
<tr>
<td>23A</td>
<td>Wood Frame Stucco on BuildBlock Basement58</td>
</tr>
<tr>
<td>23B</td>
<td>Wood Frame Stucco on BuildBlock Crawl Space59</td>
</tr>
<tr>
<td>23C</td>
<td>Stucco on BuildBlock & Crawl Space60</td>
</tr>
<tr>
<td>23D</td>
<td>Siding on BuildBlock Crawl Space61</td>
</tr>
<tr>
<td>23E</td>
<td>Brick on BuildBlock Crawl Space62</td>
</tr>
<tr>
<td>23F</td>
<td>Wood Frame Stucco on BuildBlock Basement63</td>
</tr>
<tr>
<td>24</td>
<td>BuildBlock on Piers 1 ..64</td>
</tr>
<tr>
<td>25</td>
<td>BuildBlock on Piers 2 ..65</td>
</tr>
<tr>
<td>26</td>
<td>BuildBlock on Piers 3 ..66</td>
</tr>
<tr>
<td>27</td>
<td>Detail of Stepped Footings ...67</td>
</tr>
<tr>
<td>28</td>
<td>Horizontal Intersection ...68</td>
</tr>
<tr>
<td>28A</td>
<td>"T" Intersections ..69</td>
</tr>
<tr>
<td>29</td>
<td>Load Hanging Details ..70</td>
</tr>
<tr>
<td>30</td>
<td>Vertical Reinforcing ..71</td>
</tr>
<tr>
<td>30A</td>
<td>Reinforcement of Openings ..72</td>
</tr>
<tr>
<td>30B</td>
<td>Flat ICF Lintel & Stirrup Construction73</td>
</tr>
<tr>
<td>31</td>
<td>Window Openings ...74</td>
</tr>
<tr>
<td>32</td>
<td>Mechanical Installations ..75</td>
</tr>
<tr>
<td>33</td>
<td>Sub-Grade Waterproofing ..76</td>
</tr>
<tr>
<td>34</td>
<td>Metal Deck Composite Floors77</td>
</tr>
<tr>
<td>35</td>
<td>Metal Deck & Steel Joists ...78</td>
</tr>
<tr>
<td>36</td>
<td>Precast Hollow Core Floors ...79</td>
</tr>
<tr>
<td>37</td>
<td>Beam Pocket ...80</td>
</tr>
<tr>
<td>38</td>
<td>Parapets ...81</td>
</tr>
<tr>
<td>39</td>
<td>Pilaster Detail ..82</td>
</tr>
<tr>
<td>40</td>
<td>BuildBlock Radius Walls ...83</td>
</tr>
<tr>
<td>41</td>
<td>8" Ledgeblock Outside 90° Miter No. 184</td>
</tr>
<tr>
<td>41A</td>
<td>6" Ledgeblock Outside 90° Miter No. 185</td>
</tr>
<tr>
<td>42</td>
<td>Ledgeblock Inside 90° Miter No. 186</td>
</tr>
<tr>
<td>42A</td>
<td>6" Ledgeblock Inside 90° Miter No. 187</td>
</tr>
<tr>
<td>43</td>
<td>8" Ledgeblock Outside 90° Miter No. 288</td>
</tr>
<tr>
<td>43A</td>
<td>6" Ledgeblock Outside 90° Miter No. 289</td>
</tr>
<tr>
<td>44</td>
<td>Ledgeblock Inside 90° Miter No. 290</td>
</tr>
<tr>
<td>44A</td>
<td>6" Ledgeblock Inside 90° Miter No. 291</td>
</tr>
<tr>
<td>45</td>
<td>Monolithic Footing / Slab With Stucco/EIFS92</td>
</tr>
<tr>
<td>45A</td>
<td>Monolithic Footing / Slab Siding93</td>
</tr>
<tr>
<td>46</td>
<td>Monolithic Footing / Slab Brick/Masonry94</td>
</tr>
<tr>
<td>47</td>
<td>Concrete Masonry Unit (CMU) Stemwall95</td>
</tr>
</tbody>
</table>
BuildBlock CAD Details

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>48</td>
<td>8” Ledgeblock 45° Outside Miter</td>
<td>96</td>
</tr>
<tr>
<td>49</td>
<td>8” Ledgeblock 45° Inside Miter</td>
<td>97</td>
</tr>
<tr>
<td>50</td>
<td>6” Ledgeblock 45° Inside Miter</td>
<td>98</td>
</tr>
<tr>
<td>51</td>
<td>6” Ledgeblock 45° Outside Miter</td>
<td>99</td>
</tr>
<tr>
<td>52</td>
<td>Taper Unit & Core Slab</td>
<td>100</td>
</tr>
<tr>
<td>53</td>
<td>Taper Unit & Ledge Connection 1</td>
<td>101</td>
</tr>
<tr>
<td>54</td>
<td>Taper Unit & Ledge Connection 2</td>
<td>102</td>
</tr>
<tr>
<td>55</td>
<td>Taper Unit & Ledge Connection 3</td>
<td>103</td>
</tr>
<tr>
<td>55A</td>
<td>Basement W/ BuildBlock Above & Side Bearing Floor W/ Taper Top</td>
<td>104</td>
</tr>
<tr>
<td>55B</td>
<td>Basement W/ BuildBlock Above & Side Bearing Floor</td>
<td>105</td>
</tr>
<tr>
<td>55C</td>
<td>Floor ICF Wall Connection In Seismic Zone D & Townhouse Zone C. ICF. Above</td>
<td>106</td>
</tr>
<tr>
<td>55D</td>
<td>Floor ICF Wall Connection In Seismic Zone D & Townhouse Zone C. Frame Above</td>
<td>107</td>
</tr>
<tr>
<td>56</td>
<td>BuildDeck Floor & Wall Top Bearing</td>
<td>108</td>
</tr>
<tr>
<td>57</td>
<td>BuildDeck Floor Intersection</td>
<td>109</td>
</tr>
<tr>
<td>58A</td>
<td>Brickledge 8” ledge block BB-8BL to BuildBlock BB-800</td>
<td>110</td>
</tr>
<tr>
<td>58B</td>
<td>Brickledge 8” ledge block BB-8BL to BuildBlock BB-600</td>
<td>111</td>
</tr>
<tr>
<td>58C</td>
<td>Brickledge 6” ledge block BB-8BL to BuildBlock BB-600</td>
<td>112</td>
</tr>
<tr>
<td>59A</td>
<td>BB-400/BL-400 90° Field Fabricated Corner</td>
<td>113</td>
</tr>
<tr>
<td>59B</td>
<td>BB-445/BL-445 45° Field Fabricated Corner</td>
<td>114</td>
</tr>
<tr>
<td>59C</td>
<td>BB-600/BL-600 90° Field Fabricated Corner</td>
<td>115</td>
</tr>
<tr>
<td>59D</td>
<td>BB-645/BL-645 45° Field Fabricated Corner</td>
<td>116</td>
</tr>
<tr>
<td>59E</td>
<td>BB-800/BL-800 90° Field Fabricated Corner</td>
<td>117</td>
</tr>
<tr>
<td>59F</td>
<td>BB-845/BL-845 45° Field Fabricated Corner</td>
<td>118</td>
</tr>
<tr>
<td>59G</td>
<td>BB-1000/BL-1000 90° Field Fabricated Corner</td>
<td>119</td>
</tr>
<tr>
<td>59H</td>
<td>BB-1045/BL-1045 45° Field Fabricated Corner</td>
<td>120</td>
</tr>
<tr>
<td>59I</td>
<td>BB-1200/BL-1200 90° Field Fabricated Corner</td>
<td>121</td>
</tr>
<tr>
<td>59J</td>
<td>BB-1245/BL-1245 45° Field Fabricated Corner</td>
<td>122</td>
</tr>
<tr>
<td>60A</td>
<td>GlobalBlock All Foam ICF 3” Straight Block</td>
<td>123</td>
</tr>
<tr>
<td>60B</td>
<td>GlobalBlock All Foam ICF 3” 90° Corner Block</td>
<td>124</td>
</tr>
<tr>
<td>60C</td>
<td>GlobalBlock All Foam ICF 4” Straight Block</td>
<td>125</td>
</tr>
<tr>
<td>60D</td>
<td>GlobalBlock All Foam ICF 4” 90° Corner Block</td>
<td>126</td>
</tr>
<tr>
<td>60E</td>
<td>GlobalBlock All Foam ICF 6” Straight Block</td>
<td>127</td>
</tr>
<tr>
<td>60F</td>
<td>GlobalBlock All Foam ICF 6” 90° Corner Block</td>
<td>128</td>
</tr>
<tr>
<td>60G</td>
<td>GlobalBlock All Foam ICF 8” Straight Block</td>
<td>129</td>
</tr>
<tr>
<td>60H</td>
<td>GlobalBlock All Foam ICF 8” 90° Corner Block</td>
<td>130</td>
</tr>
<tr>
<td>60I</td>
<td>GlobalBlock Web Inserts Detail</td>
<td>131</td>
</tr>
<tr>
<td>60J</td>
<td>GlobalBlock Rebar Saddle Detail</td>
<td>132</td>
</tr>
<tr>
<td>60K</td>
<td>GlobalBlock Combined Reinforcement Options</td>
<td>133</td>
</tr>
<tr>
<td>60L</td>
<td>GlobalBlock Using Plastic Web Inserts</td>
<td>134</td>
</tr>
<tr>
<td>60M</td>
<td>GlobalBlock Using Rebar Pins</td>
<td>135</td>
</tr>
<tr>
<td>60N</td>
<td>GlobalBlock Using Rebar Saddles</td>
<td>136</td>
</tr>
<tr>
<td>61A</td>
<td>ThermaSert Product Detail</td>
<td>137</td>
</tr>
<tr>
<td>61B</td>
<td>ThermaSert Kd Product Detail</td>
<td>138</td>
</tr>
<tr>
<td>62A</td>
<td>BuildBuck 6” Product Dimensions</td>
<td>139</td>
</tr>
<tr>
<td>62B</td>
<td>BuildBuck 8” Product Dimensions</td>
<td>140</td>
</tr>
<tr>
<td>62C</td>
<td>BuildBuck Product Features</td>
<td>141</td>
</tr>
<tr>
<td>62D</td>
<td>BuildBuck Cross Sections BK-600/BK-800</td>
<td>142</td>
</tr>
<tr>
<td>62E</td>
<td>BuildBuck Connection Detail</td>
<td>143</td>
</tr>
<tr>
<td>62F</td>
<td>BuildBuck Assembly and Bracing</td>
<td>144</td>
</tr>
<tr>
<td>62G</td>
<td>BuildBuck Bracing Recommendations</td>
<td>145</td>
</tr>
<tr>
<td>62H</td>
<td>BuildBuck Window Mounting Recommendations</td>
<td>146</td>
</tr>
<tr>
<td>62I</td>
<td>BuildBuck Door Installation Detail</td>
<td>147</td>
</tr>
<tr>
<td>63A</td>
<td>BuildShield Product Detail</td>
<td>148</td>
</tr>
<tr>
<td>63B</td>
<td>BuildShield Termite Installation</td>
<td>149</td>
</tr>
<tr>
<td>63C</td>
<td>BuildShield Corner Form Modification</td>
<td>150</td>
</tr>
<tr>
<td>63D</td>
<td>BuildShield Firestop Installation</td>
<td>151</td>
</tr>
<tr>
<td>63E</td>
<td>BuildShield Firestop Concrete Floor System</td>
<td>152</td>
</tr>
<tr>
<td>63F</td>
<td>BuildShield Firestop with Wood/Metal Floor System</td>
<td>153</td>
</tr>
<tr>
<td>64A</td>
<td>BuildBlock HardWall Product Detail</td>
<td>154</td>
</tr>
<tr>
<td>64B</td>
<td>BuildBlock HardWall Connector Detail</td>
<td>155</td>
</tr>
<tr>
<td>64C</td>
<td>BuildBlock HardWall Assembly</td>
<td>156</td>
</tr>
<tr>
<td>64D</td>
<td>BuildBlock HardWall Form Template</td>
<td>157</td>
</tr>
<tr>
<td>64E</td>
<td>BuildBlock HardWall Finishing</td>
<td>158</td>
</tr>
<tr>
<td>64F</td>
<td>BuildBlock HardWall Alternative Application</td>
<td>159</td>
</tr>
<tr>
<td>64G</td>
<td>BuildBlock HardWall Form Template Full Size</td>
<td>160</td>
</tr>
<tr>
<td>64H</td>
<td>BuildRadius HardWall Form Template Full Size</td>
<td>161</td>
</tr>
<tr>
<td>64I</td>
<td>BuildRadius HardWall Connector Detail</td>
<td>162</td>
</tr>
<tr>
<td>64J</td>
<td>BuildRadius 8-Foot arc Radius Product Detail</td>
<td>163</td>
</tr>
<tr>
<td>64K</td>
<td>BuildRadius 12-Foot arc Radius Product Detail</td>
<td>164</td>
</tr>
<tr>
<td>64L</td>
<td>BuildRadius 16-Foot arc Radius Product Detail</td>
<td>165</td>
</tr>
<tr>
<td>64M</td>
<td>BuildRadius 20-Foot arc Radius Product Detail</td>
<td>166</td>
</tr>
<tr>
<td>64N</td>
<td>Build Radius Wall Intersections</td>
<td>167</td>
</tr>
<tr>
<td>64O</td>
<td>2s Inch Deep Concrete Void Repair</td>
<td>168</td>
</tr>
<tr>
<td>64P</td>
<td>4s Inch Deep Concrete Void Repair</td>
<td>169</td>
</tr>
<tr>
<td>64Q</td>
<td>6± Inch Deep Concrete Void Repair</td>
<td>170</td>
</tr>
</tbody>
</table>
NOTE:
* FORM IS REVERSIBLE BOTH VERTICALLY AND HORIZONTALLY
* BLOCKS STACK @1'-4" (16") INCREMENTS

3 FRONT VIEW
SCALE: 1 1/2" = 1'-0"

6" STRAIGHT BLOCK
DATE/REV 2-2-17 /3
SCALE NTS
NOTES

CONSTRUCTION SHALL BE IN ACCORDANCE WITH ALL APPLICABLE LOCAL AND NATIONAL CODES. ALL DRAWINGS ARE SUBJECT TO CHANGE WITHOUT NOTICE.
NOTE:
- FORM IS REVERSIBLE BOTH VERTICALLY AND HORIZONTALLY
- BLOCKS STACK @ 1'-4'' (16'') INCREMENTS

FRONT VIEW
SCALE: 1 1/2'' = 1'-0''

TOP/BOTTOM VIEW (REVERSIBLE)
SCALE: 1 1/2'' = 1'-0''

SIDE VIEW
SCALE: 1 1/2'' = 1'-0''

LEGEND
- = POSITIVE PROFILES (TONGUES)
- = NEGATIVE PROFILES (GROOVES)

NOTE:
DUE TO VARIATIONS IN SELECTED PRINTER SETTINGS, NOTED SCALES MAY NO LONGER BE APPLICABLE

CONSTRUCTION SHALL BE IN ACCORDANCE WITH ALL APPLICABLE LOCAL AND NATIONAL CODES. ALL DRAWINGS ARE SUBJECT TO CHANGE WITHOUT NOTICE.
45° REVERSIBLE CORNER
TOP/BOTTOM VIEW
SCALE: 1 1/2" = 1'-0"

90° REVERSIBLE CORNER
TOP/BOTTOM VIEW
SCALE: 1 1/2" = 1'-0"

LEGEND
= POSITIVE PROFILES (TONGUES)
= 1/2 HEIGHT POSITIVE PROFILES
= NEGATIVE PROFILES (GROOVES)

NOTE:
DUE TO VARIATIONS IN
SELECTED PRINTER SETTINGS,
NOTED SCALES MAY NO
LONGER BE APPLICABLE
CONSTRUCTION SHALL BE IN ACCORDANCE WITH ALL APPLICABLE LOCAL AND NATIONAL CODES. ALL DRAWINGS ARE SUBJECT TO CHANGE WITHOUT NOTICE.
NOTE:
* FORM IS REVERSIBLE BOTH VERTICALLY AND HORIZONTALLY
* BLOCKS STACK @1'-4" (16") INCREMENTS

NORMAL DISTRIBUTION

SCALE: 1 1/2" = 1'-0"

LEGEND

= POSITIVE PROFILES (TONGUES)
= NEGATIVE PROFILES (GROOVES)

NOTE:
DUE TO VARIATIONS IN SELECTED PRINTER SETTINGS, NOTED SCALES MAY NO LONGER BE APPLICABLE
45° REVERSIBLE CORNER
TOP/BOTTOM VIEW

SCALE: 1 1/2" = 1'-0"

90° REVERSIBLE CORNER
TOP/BOTTOM VIEW

SCALE: 1 1/2" = 1'-0"

NOTE:
DUE TO VARIATIONS IN SELECTED
PRINTER SETTINGS, NOTED SCALES
MAY NO LONGER BE APPLICABLE
NOTE:
* FORM IS REVERSIBLE BOTH VERTICALLY AND HORIZONTALLY
* BLOCKS STACK @1’-4” (16") INCREMENTS

SCALE NTS DETAIL SHEET

SIDE VIEW
SCALE: 1 1/2” = 1’-0”

LEGEND

■ = POSITIVE PROFILES (TONGUES)
□ = NEGATIVE PROFILES (GROOVES)

NOTE:
DUE TO VARIATIONS IN SELECTED PRINTER SETTINGS,
NOTED SCALES MAY NO LONGER BE APPLICABLE

TOP & BOTTOM
DIMENSIONS EQUAL
CONSTRUCTION SHALL BE IN ACCORDANCE WITH ALL APPLICABLE LOCAL AND NATIONAL CODES. ALL DRAWINGS ARE SUBJECT TO CHANGE WITHOUT NOTICE.
12" KNOCKDOWN STRAIGHT BLOCKS

DATE/REV: 2-2-17 / 3
SCALE: NTS
DETAIL SHEET: 4C

NOTE:
- FORM IS REVERSIBLE BOTH VERTICALLY AND HORIZONTALLY
- BLOCKS STACK @ 1'-4" (16") INCREMENTS

FRONT VIEW
SCALE: 1 1/2" = 1'-0"

TOP/BOTTOM VIEW
(REVERSIBLE)
SCALE: 1 1/2" = 1'-0"

SIDE VIEW
SCALE: 1 1/2" = 1'-0"

LEGEND

- = POSITIVE PROFILES (TONGUES)
- = NEGATIVE PROFILES (GROOVES)

NOTE:
DUE TO VARIATIONS IN SELECTED PRINTER SETTINGS, NOTED SCALES MAY NO LONGER BE APPLICABLE
10" KNOCKDOWN 90° CORNER BLOCK

LEGEND

- □ = POSITIVE PROFILES (TONGUES)
- □ = NEGATIVE PROFILES (GROOVES)
- □ = 1/2 HEIGHT POSITIVE PROFILES

NOTE:

Due to variations in selected printer settings, noted scales may no longer be applicable.

SIDE VIEW

SCALE: 1 1/2" = 1'-0"

TOP/BOTTOM VIEW

SCALE: 1 1/2" = 1'-0"

©2017 ALL RIGHTS RESERVED

BUILDBLOCK.COM

9705 N. BROADWAY EXTENSION, SUITE 200, OKLAHOMA CITY, OK 73114
OFFICE: 405-840-3386 | TOLL FREE: 866-222-2575 | FAX: 831-597-0792

CONSTRUCTION SHALL BE IN ACCORDANCE WITH ALL APPLICABLE LOCAL AND NATIONAL CODES. ALL DRAWINGS ARE SUBJECT TO CHANGE WITHOUT NOTICE.
12" KNOCKDOWN 90° CORNER BLOCK

DATE/REV: 2-2-17 / 3
SCALE: NTS
DETAIL SHEET: 4E

BUILDING SYSTEMS
BUILDING SYSTEMS
BUILDING BLOCK TECHNICAL & INSTALLATION MANUAL PAGE 11 Revised 5/2017
©2017 ALL RIGHTS RESERVED

NOTE:
* FORM IS REVERSIBLE BOTH VERTICALLY AND HORIZONTALLY
* BLOCKS STACK @1'–4" (16") INCREMENTS

SIDE VIEW
SCALE: 1 1/2" = 1'–0"

90° REVERSIBLE CORNER BLOCK TOP/BOTTOM VIEW
SCALE: 1 1/2" = 1'–0"

LEGEND

- = POSITIVE PROFILES (TONGUES)
□ = NEGATIVE PROFILES (GROOVES)
□ = 1/2 HEIGHT POSITIVE PROFILES

NOTE:
DUE TO VARIATIONS IN SELECTED PRINTER SETTINGS, NOTED SCALES MAY NO LONGER BE APPLICABLE

CONSTRUCTION SHALL BE IN ACCORDANCE WITH ALL APPLICABLE LOCAL AND NATIONAL CODES. ALL DRAWINGS ARE SUBJECT TO CHANGE WITHOUT NOTICE.
CONSTRUCTION SHALL BE IN ACCORDANCE WITH ALL APPLICABLE LOCAL AND NATIONAL CODES. ALL DRAWINGS ARE SUBJECT TO CHANGE WITHOUT NOTICE.

NOTE:
DUE TO VARIATIONS IN SELECTED PRINTER SETTINGS, NOTED SCALES MAY NO LONGER BE APPLICABLE.
CONSTRUCTION SHALL BE IN ACCORDANCE WITH ALL APPLICABLE LOCAL AND NATIONAL CODES. ALL DRAWINGS ARE SUBJECT TO CHANGE WITHOUT NOTICE.

NOTE:
DUE TO VARIATIONS IN SELECTED PRINTER SETTINGS, NOTED SCALES MAY NO LONGER BE APPLICABLE.
8" LEDGE BLOCK STIRRUP REINFORCEMENT

BRICK LEDGE STIRRUP REINFORCEMENT IS USED TO ADD SHEAR RESISTANCE TO THE BRICK LEDGE FORM. THE STIRRUPS SHOULD BE PRE-BENT FOR EASY INSTALLATION. USE DIMENSIONS FOR THE APPROPRIATE BRICK LEDGE FORM SIZE FOR STIRRUP.

STIRRUPS SHOULD BE #3 REBAR MIN. GRADE 40

STIRRUP SPACING:

<500 LB/LFT – 24” O.C.
<1000 LB/LFT – 18” O.C.
<1500 LB/LFT – 12” O.C.

<table>
<thead>
<tr>
<th>TYP VENEER WEIGHT (LB/FT)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HEIGHT (FT)</td>
</tr>
<tr>
<td>--------------</td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td>10</td>
</tr>
<tr>
<td>12</td>
</tr>
<tr>
<td>14</td>
</tr>
<tr>
<td>16</td>
</tr>
<tr>
<td>18</td>
</tr>
<tr>
<td>20</td>
</tr>
<tr>
<td>22</td>
</tr>
<tr>
<td>24</td>
</tr>
<tr>
<td>26</td>
</tr>
<tr>
<td>28</td>
</tr>
<tr>
<td>30</td>
</tr>
</tbody>
</table>

NOTE:
DUE TO VARIATIONS IN SELECTED PRINTER SETTINGS, NOTED SCALES MAY NO LONGER BE APPLICABLE.
1 STIRRUP DETAIL

SCALE: 1 1/2” = 1'-0"

5A2

TYP VENEER WEIGHT (LB/FT)

<table>
<thead>
<tr>
<th>HEIGHT (FT)</th>
<th>3/4 BRICK</th>
<th>4" STONE OR CONCRETE</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>290</td>
<td>400</td>
</tr>
<tr>
<td>10</td>
<td>360</td>
<td>500</td>
</tr>
<tr>
<td>12</td>
<td>440</td>
<td>600</td>
</tr>
<tr>
<td>14</td>
<td>510</td>
<td>700</td>
</tr>
<tr>
<td>16</td>
<td>580</td>
<td>800</td>
</tr>
<tr>
<td>18</td>
<td>660</td>
<td>900</td>
</tr>
<tr>
<td>20</td>
<td>730</td>
<td>1000</td>
</tr>
<tr>
<td>22</td>
<td>800</td>
<td>1100</td>
</tr>
<tr>
<td>24</td>
<td>880</td>
<td>1200</td>
</tr>
<tr>
<td>26</td>
<td>950</td>
<td>1300</td>
</tr>
<tr>
<td>28</td>
<td>1020</td>
<td>1400</td>
</tr>
<tr>
<td>30</td>
<td>1090</td>
<td>1500</td>
</tr>
</tbody>
</table>

NOTE:

Due to variations in selected printer settings, noted scales may no longer be applicable.

6" LEDGE BLOCK STIRRUP REINFORCEMENT

DATE/REV: 2-2-17 / 3

SCALE | **NFS** | **DETAIL SHEET**

<table>
<thead>
<tr>
<th>NOTES</th>
</tr>
</thead>
</table>

CONSTRUCTION SHALL BE IN ACCORDANCE WITH ALL APPLICABLE LOCAL AND NATIONAL CODES. ALL DRAWINGS ARE SUBJECT TO CHANGE WITHOUT NOTICE.
BUILDING SYSTEMS

NOTES

- Blocks stack @ 1 1/4" (16") increments
- Construction shall be in accordance with all applicable local and national codes. All drawings are subject to change without notice.

6" TAPER TOP BLOCK

DATE/REV: 2-2-17 / 3
SCALE: NTS
DETAIL SHEET: 5B

LEGEND

- Blue = Positive Profiles (tongues)
- Red = Negative Profiles (grooves)

NOTE:

The blue area inside the red is solid below the red.
*BLOCKS STACK @1'4" (16") INCREMENTS

SCALE: 1 1/2" = 1'-0"

LEGEND

- = POSITIVE PROFILES (TONGUES)
\[\] = NEGATIVE PROFILES (GROOVES)

NOTE:
THE BLUE AREA INSIDE THE
RED IS SOLID BELOW THE RED
CONSTRUCTION SHALL BE IN ACCORDANCE WITH ALL APPLICABLE LOCAL AND NATIONAL CODES. ALL DRAWINGS ARE SUBJECT TO CHANGE WITHOUT NOTICE.

NOTE:
ALL CONCRETE AND STEEL DESIGN MUST BE APPROVED BY THE PROJECT SPECIFIC ENGINEER OF RECORD.

NOTE:
EPS RISERS OF VARYING HEIGHTS MAY BE ADDED TO THE TOP OF BUILDDECK PANELS TO ADJUST HEIGHTS ACCORDING TO ENGINEERED SPECIFICATIONS.

NOTE:
DUE TO VARIATIONS IN PRINTERS AND PRINT SETTINGS, THIS DETAIL MAY OR MAY NOT BE TO SCALE.
NOTE:
ALL CONCRETE AND STEEL DESIGN MUST BE APPROVED BY THE PROJECT SPECIFIC ENGINEER OF RECORD.

NOTE:
EPS RISERS OF VARYING HEIGHTS MAY BE ADDED TO THE TOP OF BUILDDECK PANELS TO ADJUST HEIGHTS ACCORDING TO ENGINEERED SPECIFICATIONS.

NOTE:
DUE TO VARIATIONS IN PRINTERS AND PRINT SETTINGS, THIS DETAIL MAY OR MAY NOT BE TO SCALE.
NOTE:
ALL CONCRETE AND STEEL DESIGN MUST BE APPROVED BY THE PROJECT SPECIFIC ENGINEER OF RECORD.

NOTE:
EPS RISERS OF VARYING HEIGHTS MAY BE ADDED TO THE TOP OF BUILDDECK PANELS TO ADJUST HEIGHTS ACCORDING TO ENGINEERED SPECIFICATIONS.

NOTE:
DUE TO VARIATIONS IN PRINTERS AND PRINT SETTINGS, THIS DETAIL MAY OR MAY NOT BE TO SCALE.
Note:
All concrete and steel design must be approved by the project specific Engineer of Record.

Concrete Top Cap
Grid Steel Spec'd by Engineer of Record
2" EPS Riser
Optional 3.25" screw installed from below for additional reinforcement
BuildDeck BD-1200
Beam Steel Spec'd by Engineer of Record
Sheetrock
#8 Course Thread Drywall Screw
BB Supplied Steel Attachment Chanel

BUILDDECK 12" + 2" FOAM TOP HAT

DATE/REV: 11-17-09
SCALE: NTS
DETAIL SHEET: BD-12+2

CONSTRUCTION SHALL BE IN ACCORDANCE WITH ALL APPLICABLE LOCAL AND NATIONAL CODES. ALL DRAWINGS ARE SUBJECT TO CHANGE WITHOUT NOTICE.
CONSTRUCTION SHALL BE IN ACCORDANCE WITH ALL APPLICABLE LOCAL AND NATIONAL CODES. ALL DRAWINGS ARE SUBJECT TO CHANGE WITHOUT NOTICE.
BuildDeck Panel + Steel Attach. Strip

BuildDeck BD-1200

#5 Steel 1’ O.C. parallel to concrete beam

#3 Steel 1’ O.C. perpendicular to concrete beam

Beam Steel Spec’d by Engineer of Record

6” EPS Riser

Concrete Top Cap

#3 Stirrup @ 9” O.C.

Optional 3.25” screw installed from below

BB Supplied Steel Attachment Channel

Note: All concrete and steel design must be approved by the project specific Engineer of Record

See “Stirrup Details” page for specs.

NOTE: Remove foam as necessary to maintain min. 3/4” concrete coverage on all steel.
See "Stirrup Details" page for specs.

NOTE: Remove foam as necessary to maintain min. 3/4" concrete coverage on all steel.

Construction shall be in accordance with all applicable local and national codes. All drawings are subject to change without notice.

BuildDeck 12" + 8" FOAM TOP HAT

DATE/REV 11-17-09 SCALE NTS DETAIL SHEET
NOTES BD-12+8

BuildDeck BD-1200

BuildDeck Panel + Steel Attach. Strip

BuildDeck BD-1200

BB Supplied Steel Attachment Channel

#8 Course Thread Drywall Screw

Optional 3.25" screw installed from below

Note: All concrete and steel design must be approved by the project specific Engineer of Record

Concrete Top Cap

8" EPS Riser

Beam Steel Spec’d by Engineer of Record

#3 Stirrup @ 9" O.C.

#3 Steel 1" O.C. perpendicular to concrete beam

#5 Steel 1" O.C. parallel to concrete beam
BUILDDECK LONG SPAN STIRRUPS

DATE/REV 11-17-09
SCALE NTS
DETAIL SHEET 5K

NOTES

All concrete and steel design must be approved by the project specific Engineer of Record.

Note: Construction shall be in accordance with all applicable local and national codes. All drawings are subject to change without notice.
1-STORY BRICK VENEER

DATE/REV: 10-31-06/2

SCALE: 1" = 1'-0"

CONSTRUCTION SHALL BE IN ACCORDANCE WITH ALL APPLICABLE LOCAL AND NATIONAL CODES. ALL DRAWINGS ARE SUBJECT TO CHANGE WITHOUT NOTICE.

NOTE: DUE TO VARIATIONS IN SELECTED PRINTER SETTINGS, NOTED SCALES MAY NO LONGER BE APPLICABLE.
CONSTRUCTION SHALL BE IN ACCORDANCE WITH ALL APPLICABLE LOCAL AND NATIONAL CODES. ALL DRAWINGS ARE SUBJECT TO CHANGE WITHOUT NOTICE.
BUILDING SYSTEMS

DATE/REV 11-28-06 /3 SCALE NTS DETAIL SHEET

BUILDBLOCK STEM & CRAWL SPACE

9705 N. BROADWAY EXTENSION, SUITE 200, OKLAHOMA CITY, OK 73114
OFFICE: 405-840-3386 | TOLL FREE: 866-222-2575 | FAX: 831-597-0792
BUILDBLOCK.COM

CONSTRUCTION SHALL BE IN ACCORDANCE WITH ALL APPLICABLE LOCAL AND NATIONAL CODES. ALL DRAWINGS ARE SUBJECT TO CHANGE WITHOUT NOTICE.

©2017 ALL RIGHTS RESERVED

BUILDBLOCK TECHNICAL & INSTALLATION MANUAL PAGE 30 Revised 5/2017

©2017 ALL RIGHTS RESERVED

BUILDBLOCK STEM & CRAWL SPACE

9705 N. BROADWAY EXTENSION, SUITE 200, OKLAHOMA CITY, OK 73114
OFFICE: 405-840-3386 | TOLL FREE: 866-222-2575 | FAX: 831-597-0792
BUILDBLOCK.COM

CONSTRUCTION SHALL BE IN ACCORDANCE WITH ALL APPLICABLE LOCAL AND NATIONAL CODES. ALL DRAWINGS ARE SUBJECT TO CHANGE WITHOUT NOTICE.

©2017 ALL RIGHTS RESERVED

BUILDBLOCK TECHNICAL & INSTALLATION MANUAL PAGE 30 Revised 5/2017

©2017 ALL RIGHTS RESERVED

BUILDBLOCK STEM & CRAWL SPACE

9705 N. BROADWAY EXTENSION, SUITE 200, OKLAHOMA CITY, OK 73114
OFFICE: 405-840-3386 | TOLL FREE: 866-222-2575 | FAX: 831-597-0792
BUILDBLOCK.COM

CONSTRUCTION SHALL BE IN ACCORDANCE WITH ALL APPLICABLE LOCAL AND NATIONAL CODES. ALL DRAWINGS ARE SUBJECT TO CHANGE WITHOUT NOTICE.
Construction shall be in accordance with all applicable local and national codes. All drawings are subject to change without notice.
LOG CONSTRUCTION
PER MANUFACTURERS
SPECIFICATIONS

FLOOR SYSTEM PER
CONSTRUCTION DRAWINGS

RIM JOIST PERPENDICULAR
TO FLOOR JOIST – AT RIMS
PARALLEL TO JOIST DOUBLE
W/ BLOCKING OR PROVIDE
CRIPPLES PERPENDICULAR
TO RIM (SEE DIAGRAMS BELOW)

LOG SIDING

2x_ SOLE PLATE AS
REQUIRED

SOLE PLATE CLOSURE –
GROUND CONTACT RATED
STUCCO OR OTHER – LOG
SIDING MAY CONTINUE TO GRADE

SLOPE FINISHED GRADE
AWAY FROM BUILDING

"BuildBlock" 6" OR 8"
UNITS – REINFORCING PER
SPECIFICATIONS

VERTICAL REBAR PER
DESIGN – SEE ENGINEERING
GUIDELINES – SPACE PINS EQ.
W/ VERTICAL STEEL IN WALLS

CONCRETE FOOTING –
REINFORCING PER
CONSTRUCTION
DRAWINGS

FOOTING – DIMENSIONS SHOWN
ARE MIN. STANDARD – ADJUST
AS REQUIRED FOR SOIL CONDITIONS
AND PER LOCAL CODES

FOUNDATION DETAIL
SCALE: 1" = 1'–0"

CRAWL SPACE
CUT & BOX OUT FORMS
AT REQUIRED CODE
ACCESS & VENTILATION
PANELS

COMMON JOIST
PERPENDICULAR TO RIM

COMMON JOIST PARALLEL
TO RIM W/ CRIPPLES

COMMON JOIST PARALLEL
TO DOUBLE RIM W/ BLOCKING

NOTE:
DUE TO VARIATIONS IN SELECTED
PRESSURE SETTINGS, NOTED SCALES
MAY NO LONGER BE APPLICABLE
NOTES:
1. VARIATIONS IN IMPOSED LIVE & DEAD LOADS AND OTHER APPLICATION SPECIFIC VARIABLES REQUIRE ALL ASPECTS OF THE DETAILS SHOWN HERE TO BE DESIGNED AND/OR APPROVED BY A QUALIFIED ENGINEER.
2. ALL CONSTRUCTION SHALL BE IN ACCORDANCE W/ THE SPECIFICATION OF AND THE RESPONSIBILITY OF A QUALIFIED STRUCTURAL ENGINEER.
3. INSTALL APPROVED MEMBRANE WATERPROOFING AT ALL SURFACES BELOW GRADE EXTEND 12" MIN. ABOVE FINAL GRADE.

BASEMENT, TAPER UNIT & LOG WALL

<table>
<thead>
<tr>
<th>DATE/REV</th>
<th>SCALE</th>
<th>NTS</th>
<th>DETAIL SHEET</th>
</tr>
</thead>
<tbody>
<tr>
<td>9-30-07 /2</td>
<td>1" = 1'-0"</td>
<td></td>
<td>12A</td>
</tr>
</tbody>
</table>

CONSTRUCTION SHALL BE IN ACCORDANCE WITH ALL APPLICABLE LOCAL AND NATIONAL CODES. ALL DRAWINGS ARE SUBJECT TO CHANGE WITHOUT NOTICE.
BASEMENT WITH BRICK 1 OR 2 STORY BUILDBLOCK ABOVE

DATE/REV 11-17-09 SCALE NTS DETAIL SHEET

NOTES

CONSTRUCTION SHALL BE IN ACCORDANCE WITH ALL APPLICABLE LOCAL AND NATIONAL CODES. ALL DRAWINGS ARE SUBJECT TO CHANGE WITHOUT NOTICE.

9705 N. BROADWAY EXTENSION, SUITE 200, OKLAHOMA CITY, OK 73114
OFFICE: 405-840-3386 | TOLL FREE: 866-222-2575 | FAX: 831-597-0792
BUILDBLOCK.COM

©2017 ALL RIGHTS RESERVED

BUILDING SYSTEMS

BASEMENT WITH BRICK 1 OR 2 STORY BUILDBLOCK ABOVE

CONSTRUCTION SHALL BE IN ACCORDANCE WITH ALL APPLICABLE LOCAL AND NATIONAL CODES. ALL DRAWINGS ARE SUBJECT TO CHANGE WITHOUT NOTICE.

9705 N. BROADWAY EXTENSION, SUITE 200, OKLAHOMA CITY, OK 73114
OFFICE: 405-840-3386 | TOLL FREE: 866-222-2575 | FAX: 831-597-0792
BUILDBLOCK.COM

©2017 ALL RIGHTS RESERVED

BUILDING SYSTEMS
CONSTRUCTION SHALL BE IN ACCORDANCE WITH ALL APPLICABLE LOCAL AND NATIONAL CODES. ALL DRAWINGS ARE SUBJECT TO CHANGE WITHOUT NOTICE.
WALL DETAIL W/SILL PLATE & SLOPE ROOF

DATE/REV 11-17-09
SCALE NTS DETAIL SHEET

CONSTRUCTION SHALL BE IN ACCORDANCE WITH ALL APPLICABLE LOCAL AND NATIONAL CODES. ALL DRAWINGS ARE SUBJECT TO CHANGE WITHOUT NOTICE.

NOTE:
DUE TO VARIATIONS IN SELECTED PRINTER SETTINGS, NOTED SCALES MAY NO LONGER BE APPLICABLE.
BASEMENT WITH SIDING ON ONE STORY BUILDBLOCK AND SECOND FLOOR FRAME ABOVE

DATE/REV 11-17-09 SCALE NTS DETAIL SHEET

13C

BASEMENT FOUNDATION

TYPICAL WALL SECTION
SCALE: 3/4" = 1'-0"

NOTE:
DUE TO VARIATIONS IN SELECTED PRINTER SETTINGS, NOTED SCALES MAY NO LONGER BE APPLICABLE

CONSTRUCTION SHALL BE IN ACCORDANCE WITH ALL APPLICABLE LOCAL AND NATIONAL CODES. ALL DRAWINGS ARE SUBJECT TO CHANGE WITHOUT NOTICE.

SIDING - VINYL, WOOD, CEMENT BOARD OR OTHER AS SPECIFIED (ADDITIONAL SUBSTRATES MAY BE REQUIRED)

ADDITIONAL COURSES AS REQUIRED (OR FRAME CONSTRUCTION)

FRAME FLOOR TOP BEARING

ALTERNATE

14 SIMILAR
TYPICAL FLOOR INTERSECTION
ALSO SEE ALTERNATE SECTION DETAIL 2-14 (SIM.)

9705 N. BROADWAY EXTENSION, SUITE 200, OKLAHOMA CITY, OK 73114
OFFICE: 405-840-3386 | TOLL FREE: 866-222-2575 | FAX: 831-597-0792
BUILDBLOCK.COM
BASEMENT WITH 1 OR 2 STORY BUILDBLOCK ABOVE

CONSTRUCTION SHALL BE IN ACCORDANCE WITH ALL APPLICABLE LOCAL AND NATIONAL CODES. ALL DRAWINGS ARE SUBJECT TO CHANGE WITHOUT NOTICE.
NOTE:
INSTALL APPROVED MEMBRANE WATER-PROOFING AT ALL SURFACES BELOW GRADE
EXTEND 12" MIN. ABOVE FINAL GRADE
FLOOR SYSTEM PER CONSTRUCTION DRAWINGS
CONTINUOUS LEDGER BOARD
WEEP HOLES PER SECTION 703.7.6
OF THE IRC 2003 CODE
1ST FIN. FLR. ELEV. 100'-0" (DATUM)
SLOPE FINISHED GRADE AWAY FROM BUILDING
GROUT FILL BELOW GRADE

APPROVED JOIST HANGER
MASONRY VENEER (VERIFY CODE APPROVED GRADE CLEARANCE FOR PROJECT LOCATION)
APPROVED MEMBRANE WATER PROOFING
CAST EMBEDDED STEEL ANCHOR
BOLTS - SIZE & FREQUENCY PER ENGINEERING SPECIFICATIONS

EXTERIOR APPLICATIONS
FLOOR SYSTEM FOR EXTERIOR APPLICATION SUCH AS WOOD OR METAL DECKS MAY USE A SIMILAR ANCHORING SYSTEM TO THOSE SHOWN ON THIS DETAIL SHEET
FLOOR SYSTEM PER CONSTRUCTION DRAWINGS
CONTINUOUS LEDGER BOARD
1ST FIN. FLR. ELEV. 100'-0" (DATUM)
WEEP HOLES PER SECTION 703.7.6
OF THE IRC 2003 CODE
SLOPE FINISHED GRADE AWAY FROM BUILDING
GROUT FILL BELOW GRADE
APPROVED MEMBRANE WATER-PROOFING AT ALL SURFACES BELOW GRADE
APPROVED JOIST HANGER
MASONRY VENEER (VERIFY CODE APPROVED GRADE CLEARANCE FOR PROJECT LOCATION)
ICF LEDGER CONNECTOR SYSTEM AS MFG. BY "SIMPSON STRONG-TIE INC.

SEE ADDITIONAL INFORMATION ABOUT "SIMPSON" PRODUCTS ONLINE - WWW.STRONGTIE.COM OR CONTACT ENGINEERING SUPPORT @ 1-800-999-5099

NOTE:
DUE TO VARIATIONS IN SELECTED PRINTER SETTINGS, NOTED SCALES MAY NO LONGER BE APPLICABLE

BUILDBLOCK 6" TYPICAL FLOOR INTERSECTIONS

DATE/REV 11-17-09
SCALE NTS
NOTES

BUILDBLOCK.COM

9705 N. BROADWAY EXTENSION, SUITE 200, OKLAHOMA CITY, OK 73114
OFFICE: 405-840-3386 | TOLL FREE: 866-222-2575 | FAX: 831-597-0792

CONSTRUCTION SHALL BE IN ACCORDANCE WITH ALL APPLICABLE LOCAL AND NATIONAL CODES. ALL DRAWINGS ARE SUBJECT TO CHANGE WITHOUT NOTICE.
NOTE:
INSTALL APPROVED MEMBRANE WATER-PROOFING AT ALL-surfaces below GRADE
EXTEND 12" MIN. ABOVE FINAL GRADE

FLOOR SYSTEM PER CONSTRUCTION DRAWINGS

FRAME CONSTRUCTION & FINISH PER CONSTRUCTION DRAWINGS

1ST FIN. FLR. ELEV. 100'-0" (DATUM)
6" MIN.

(VERIFY CODE APPROVED GRADE CLEARANCE FOR PROJECT LOCATION)

"BuildBlock" 8" I.C.F. UNITS

APPROVED MEMBRANE WATER-PROOFING
CAST EMBEDDED STEEL ANCHOR BOLTS - SIZE & FREQUENCY PER ENGINEERING SPECIFICATIONS

SECTION DETAIL
SCALE: 1" = 1'-0"

NOTE:
DUE TO VARIATIONS IN SELECTED PRINTER SETTINGS, NOTED SCALES MAY NO LONGER BE APPLICABLE

FRAME FLOOR TOP BEARING

DATE/REV 10-04-07 / 4

NOTES

CONSTRUCTION SHALL BE IN ACCORDANCE WITH ALL APPLICABLE LOCAL AND NATIONAL CODES. ALL DRAWINGS ARE SUBJECT TO CHANGE WITHOUT NOTICE.
NOTE:
INSTALL APPROVED MEMBRANE WATER-PROOFING AT ALL SURFACES BELOW GRADE
EXTEND 12" MIN. ABOVE FINAL GRADE

FLOOR SYSTEM PER CONSTRUCTION DRAWINGS
CONTINUOUS LEDGER BOARD
WEEP HOLES PER SECTION 703.7.6
OF THE IRC 2003 CODE
1ST FIN. FLR. ELEV. 100'-0" (DATUM)

SLOPE FINISHED GRADE AWAY FROM BUILDING
GROUT FILL BELOW GRADE

APPROVED JOIST HANGER
MASONRY VENEER (VERIFY CODE APPROVED GRADE CLEARANCE FOR PROJECT LOCATION)
APPROVED MEMBRANE WATER PROOFING
CAST EMBEDDED STEEL ANCHOR BOLTS – SIZE & FREQUENCY PER ENGINEERING SPECIFICATIONS

EXTERIOR APPLICATIONS

FLOOR SYSTEM FOR EXTERIOR APPLICATION SUCH AS WOOD OR METAL DECKS MAY USE A SIMILAR ANCHORING SYSTEM TO THOSE SHOWN ON THIS DETAIL SHEET

FLOOR SYSTEM PER CONSTRUCTION DRAWINGS

CONTINUOUS LEDGER BOARD
1ST FIN. FLR. ELEV. 100'-0" (DATUM)
WEEP HOLES PER SECTION 703.7.6
OF THE IRC 2003 CODE
SLOPE FINISHED GRADE AWAY FROM BUILDING

GROUT FILL BELOW GRADE
APPROVED MEMBRANE WATER-PROOFING AT ALL SURFACES BELOW GRADE
APPROVED JOIST HANGER
MASONRY VENEER (VERIFY CODE APPROVED GRADE CLEARANCE FOR PROJECT LOCATION)
ICF LEDGER CONNECTOR SYSTEM AS MFG. BY "SIMPSON STRONG-TIE INC.

SEE ADDITIONAL INFORMATION ABOUT "SIMPSON" PRODUCTS ONLINE - WWW.STRONGTIE.COM OR CONTACT ENGINEERING SUPPORT @ 1-800-999-5099

NOTE:
DUE TO VARIATIONS IN SELECTED PRINTER SETTINGS, NOTED SCALES MAY NO LONGER BE APPLICABLE.
ICF Connectors

The ICF Ledger Connector System is engineered to solve the challenges of mounting wood or steel ledgers to insulated concrete form (ICF) walls. This flyer provides information on the various products we have to serve the ICF market.

This year Simpson is introducing a new component of the system—the ICFVL, designed to provide both vertical and lateral, in-plane resistance. The system is still quick, versatile and easy to use but now provides so much more! Simpson's ICFVL is made from galvanized, 14-gauge steel. The embedded tabs are embossed for additional stiffness and the holes allow for concrete to flow through and around the connector. The exposed flange on the face of the ICF provides a structural surface for mounting either a wood or steel ledger.

INSTALLATION OF ICFVL:
- Snap a line for the bottom of the ledger and mark the on center spacing
- Use the ICFVL to mark the keft locations in the ICF
- Cut the kefts as marked
- Insert the ICFVL flush to the face of the ICF
- Place concrete (min f’c = 2500 psi)

ATTACHMENT OF WOOD LEDGER
- Slip the appropriate ledger connector underneath the wood ledger (as shown)
- Install the eight IOF-C6 screws partially into the ledger
- Position the ledger level to the chalk line and drive the required number of screws through the wood and into the ICFVL
- All screws should be located at least ¼" from the edge of the ICFVL

ATTACHMENT OF STEEL LEDGER
- Position the ledger level to the chalk line and drive the required number of screws through the steel ledger and into the ICFVL
- All screws should be located at least ¼" from the edge of the ICFVL
- Space screws evenly
ICF Connectors

1. Use MAB15Z or MAB23Z.

2. Attach interior partition walls with 1/4-14 #3 drill point screws (sold separately) into ICF VL where needed.

3. Use ICF VL to attach ledger to ICF.

4. Use ICF VL-W for solid sawn lumber or ICF VL-CW for LVL.
 NOTE: See drawing below for detail on double 2x ledger.

5. Use IUS hanger for I-joint floor system.

Typical face mount floor truss hangers include, but not limited to, LUS, HUS, HHU5 and HHUS. Attachment of second ledger to be designed by others.
Plate Connections

Anchor Spacing

<table>
<thead>
<tr>
<th>Model No.</th>
<th>O.C. Spacing to replace 12" Anchor Bolt</th>
<th>O.C. Spacing to replace 18" Anchor Bolt</th>
<th>Min. Concrete Bolt</th>
<th>Min. C.C. Spacing</th>
</tr>
</thead>
<tbody>
<tr>
<td>MA815</td>
<td>2"</td>
<td>2"</td>
<td>1"</td>
<td>12"</td>
</tr>
<tr>
<td>MA821</td>
<td>2"</td>
<td>2"</td>
<td>1/2"</td>
<td>12"</td>
</tr>
</tbody>
</table>

1. Place anchors not more than 1" from the end of each wall cycle.
2. Anchors to be cut off parallel to plate load flow axis only.
3. All gage and concrete min. FC = 2000 psi.

Typical ICF Installation

- **Titan HD Installation into ICF:**

Notes

- For additional information, refer to Simpson Anchor and Fastening Systems for Concrete & Masonry selections.
- Titan HD installation is required parallel to plate, perpendicular to plate, and between components in a suitable groove anchor bolt of equivalent diameter.
Truss Connections

Lateral Truss Anchor (LTA) for high uplift and lateral values eliminates treated plate.

See Simpson catalog for additional information on Lateral Truss Anchors.

<table>
<thead>
<tr>
<th>Model No.</th>
<th>Fasteners</th>
<th>Allowable Loads (133/160) - DF/SP</th>
</tr>
</thead>
<tbody>
<tr>
<td>LTA</td>
<td>3/16" x 21"</td>
<td>4/8" x 21"</td>
</tr>
<tr>
<td></td>
<td>1470</td>
<td>1420</td>
</tr>
</tbody>
</table>

H4 for single plate to truss connection.

See Simpson catalog for additional information on other models of Systatic and Hurricane Ties.

<table>
<thead>
<tr>
<th>Model No.</th>
<th>Fasteners</th>
<th>Allowable Loads (133/160) - DF/SP</th>
</tr>
</thead>
<tbody>
<tr>
<td>H4</td>
<td>18</td>
<td>4/8" x 1½"</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1420</td>
</tr>
</tbody>
</table>

FGTR installation into ICF.

See Simpson catalog for additional information on Face Mount Corner Timbers.

<table>
<thead>
<tr>
<th>Model No.</th>
<th>Fasteners</th>
<th>Allowable Uplift Loads (133/160)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FGTR</td>
<td>19-3/4" x 3/8"</td>
<td>2-1/2" x 3/8"</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5000</td>
</tr>
</tbody>
</table>

Typical MTSM20 installation into ICF.

See Simpson catalog for additional information and other models of Systatic and Hurricane Ties.

<table>
<thead>
<tr>
<th>Model No.</th>
<th>Fasteners</th>
<th>Allowable Loads (133/160) - DF/SP</th>
</tr>
</thead>
<tbody>
<tr>
<td>MTSM20</td>
<td>10</td>
<td>7-1/4" x 1½"</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7-1/4"</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4-1/4" x 1½"</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8-10</td>
</tr>
</tbody>
</table>

H16S installation into ICF.

H16S installation into ICF.

<table>
<thead>
<tr>
<th>Model No.</th>
<th>Fasteners</th>
<th>Allowable Loads</th>
</tr>
</thead>
<tbody>
<tr>
<td>H16S</td>
<td>10</td>
<td>6-1/4" x 1½"</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1470</td>
</tr>
</tbody>
</table>

HM9 installation into ICF.

HM9 installation into ICF.

<table>
<thead>
<tr>
<th>Model No.</th>
<th>Fasteners</th>
<th>Allowable Loads</th>
</tr>
</thead>
<tbody>
<tr>
<td>HM9</td>
<td>10</td>
<td>5-1/4" x 1½"</td>
</tr>
<tr>
<td></td>
<td></td>
<td>595</td>
</tr>
</tbody>
</table>

HGAM10 installation into ICF.

HGAM10 installation into ICF.

<table>
<thead>
<tr>
<th>Model No.</th>
<th>Fasteners</th>
<th>Allowable Loads</th>
</tr>
</thead>
<tbody>
<tr>
<td>HGAM10</td>
<td>14</td>
<td>4-1/4" x 1½"</td>
</tr>
<tr>
<td></td>
<td></td>
<td>860</td>
</tr>
</tbody>
</table>

1. Loads have been increased 33 and 70% for high and/or wind loading with no further increase allowed. Reductions after loads govern.
2. Minimum joint distance is 1½" when using Titen screws.
3. See Simpson catalog for additional dimensional, installation and loading information.
ICF Connectors

GENERAL NOTES:
1. These products are not intended for use on pressure-treated lumber.
2. Do not splice ledger at ICFVL location.
3. No load duration increase is allowed.
4. Minimum concrete compressive strength (FC) is 2000 psi.

WARNING: Industry studies show that hardened lumber can experience performance problems in wet environments. Accordingly, use this product in dry interior applications only.

WOOD LEDGERS

<table>
<thead>
<tr>
<th>Allowable Loads (lbs) - ASD</th>
<th>Vertical</th>
<th>Lateral</th>
</tr>
</thead>
<tbody>
<tr>
<td>15G</td>
<td>1050</td>
<td>1955</td>
</tr>
</tbody>
</table>

1. Use Simpson ICF-23 series (provided).
2. Loads apply to ICPs with wall thickness 2 1/4" or less. Contact Simpson for allowable load on thicker walls.
3. Loads assume a minimum Splice-Fin Wedge.

Typical Wood Ledger Installation with ICFVL and ICFVL-W (ICFVL-WW for LWL Ledgers similar)

Recommended Splicing Installation

MISINSTALLATION!

Splicing MISINSTALLATION!

ICFVL Spacing to Replace Anchor Bolts

<table>
<thead>
<tr>
<th>½" Diameter Bolts</th>
<th>3/4" Diameter Bolts</th>
</tr>
</thead>
<tbody>
<tr>
<td>12" o.c.</td>
<td>24" o.c.</td>
</tr>
<tr>
<td>40"</td>
<td>40"</td>
</tr>
</tbody>
</table>

(2) 3/4" Diameter Bolts

<table>
<thead>
<tr>
<th>12" o.c.</th>
<th>24" o.c.</th>
<th>36" o.c.</th>
<th>48" o.c.</th>
<th>12" o.c.</th>
<th>24" o.c.</th>
<th>36" o.c.</th>
<th>48" o.c.</th>
</tr>
</thead>
<tbody>
<tr>
<td>48"</td>
<td>48"</td>
<td>50"</td>
<td>48"</td>
<td>45"</td>
<td>48"</td>
<td>45"</td>
<td>44"</td>
</tr>
</tbody>
</table>

1. The designer may specify different spacing based on the load requirements.
2. Spacings are based on proportionate to gage capacity of bolt in wood ledger compared to installed value of ICFVL with a maximum allowable spacing of 48".

STEEL LEDGERS

<table>
<thead>
<tr>
<th>Allowable Loads (lbs) - ASD</th>
<th>Vertical</th>
<th>Lateral</th>
</tr>
</thead>
<tbody>
<tr>
<td>15G</td>
<td>1555</td>
<td>1555</td>
</tr>
</tbody>
</table>

1. Use four 1/4"-18 x 4" drill point screws (not provided)
2. Loads apply to ICPs with wall thickness 2 1/4" or less. Contact Simpson for allowable load on thicker walls.

Ledger Thickness (mil)Spacing to Replace Anchor Bolts

<table>
<thead>
<tr>
<th>Spacing to Replace Anchor Bolts</th>
<th>½" Diameter Bolts</th>
<th>3/4" Diameter Bolts</th>
</tr>
</thead>
<tbody>
<tr>
<td>12" o.c.</td>
<td>24" o.c.</td>
<td>36" o.c.</td>
</tr>
<tr>
<td>48"</td>
<td>48"</td>
<td>50"</td>
</tr>
</tbody>
</table>

1. For steel ledgers, the 48 mil ledger spacing is closer than the 54 mil ledger because the calculated load of a bolt is higher in a thicker sheet of steel.
2. Steel ledger values are based on steel, f_y = 60 ksi.
ICF Connectors

The following spacing tables are an alternative to the ICFVL Spacing to Replace Anchor Bolts tables or allowable loads on page 5. They give the spacing of our ICFVL Ledger Connectors based on the allowable vertical load of the connector, the load on the floor and the span of the joists. The designer must determine the design load, the ledger design and joint design. This table is useful if the designer has only loads and spans, but not necessarily anchor bolt spacing.

<table>
<thead>
<tr>
<th>Uniform Loads</th>
<th>ICFVL Spacing for Wood Ledger (in)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Dead Load (PSF)</td>
</tr>
<tr>
<td>10</td>
<td>40</td>
</tr>
<tr>
<td>15</td>
<td>40</td>
</tr>
<tr>
<td>20</td>
<td>40</td>
</tr>
<tr>
<td>30</td>
<td>60</td>
</tr>
<tr>
<td>40</td>
<td>60</td>
</tr>
<tr>
<td>50</td>
<td>60</td>
</tr>
<tr>
<td>60</td>
<td>60</td>
</tr>
</tbody>
</table>

1. Values shown are maximum spacing distances (in) based on simple span, uniformly loaded conditions and do not consider concentrated loads.
2. Joints and ledgers are to be designed by others.
3. Allowable loads are based on testing with no further increases allowed.
4. Table above address vertical loads only. All connection is designed to resist horizontal loads, spacing will decrease. Contact Simpson for current information.

Simpson offers many retrofit products for attaching wood or steel framing members to concrete. For expanded details contact us at (800) 999-5099 and request the current Simpson Anchor Systems catalog, or visit the Simpson Anchor Systems website at www.simpsonanchors.com.

Alternative Retrofit Solution for Direct Attachment of Joist to Wall

The HLI and HUC hangers are heavy duty face mount joist hangers made from 14-ga galvanized steel. These hangers can be directly attached to concrete wall using 1x1”1/4 Titen Hex Head screws. See Simpson technical bulletin T-ANCHOR SPEC for more information on installation and use.

This file is effective until January 31, 2008, and reflects information available as of December 1, 2005. This conforms is updated periodically and should not be relied upon after January 31, 2008. Contact Simpson for current information and limited warranty or see www.strongtie.com.
NEW! The ICFVL Ledger Connector System is engineered to solve the challenges of mounting wood or steel ledgers to insulated concrete form (ICF) walls. Simpson’s new ICFVL Ledger Connector System (ICFVL) is designed to provide both vertical and lateral, in-plane performance. The system is still used, versatile and easy to use but now provides so much more! There are many benefits over traditional anchor bolting, including better in-plane spacing in most cases, faster installation and no protrusions.

Simpson’s ICFVL is made from galvanized, 14 gauge steel. The embedded legs are embossed for additional stiffness and the hole allows for concrete to flow through and around the connector. The exposed flanges on the face of the IFVL provides a structural surface for mounting either a wood or steel ledger.

MATERIAL: ICFVL—14 gauge, ICFVL-W and ICFVL-W—16 gauge.

INSTALLATION: ICFVL in ICF

- Snap a chalk line for the bottom of the ledger.
- Mark required in center spacing.
- Use ICFVL to work ledger locations.
- Drill holes as marked.
- Insert ICFVL flush to the face of the ICF.

Wood Ledger Attachment—ICFVL-W or -CW

- Slip appropriate ledger connector underneath the ledger.
- Insert the eight ICF-VL screws partially into the ledger.
- Position the ledger head to the chalk line and drive the screws through the wood and into the ICFVL.

Steel Ledger Attachment

- Position the ledger head to the chalk line and against the ICFVL.
- Attach with four 14-14 x 1-1/2 drill point screws (not provided).
- All screws should be located at least 18” from the edge of the ICFVL.

SPACE SCREWS EVENLY.

NOTES

1. Fasteners for wood ledgers (S) are provided with the kit and fasteners for steel ledgers are not provided.
2. Loads are given per ICFVL frame thickness of 5” or less. Contact Simpson for smaller holes in thicker walls.
3. Accuracy of #4 x 1-1/2” screws may be varied.
4. Throughbolt loads may not be increased.

CODES: See page 12 for Code Listing Key Chart.

ICFVL SPACING TO REPLACE ANCHOR BOLTS (in) | Code Ref.

<table>
<thead>
<tr>
<th>Ledger Type</th>
<th>Connector Type</th>
<th>1/4” Dia. Anchors at 12” 8.4” 6.0” 4.6” 3.3” 2.3”</th>
<th>3/16” Dia. Anchors at 12” 8.4” 6.0” 4.6” 3.3” 2.3”</th>
<th>5/32” Dia. Anchors at 12” 8.4” 6.0” 4.6” 3.3” 2.3”</th>
<th>7/32” Dia. Anchors at 12” 8.4” 6.0” 4.6” 3.3” 2.3”</th>
<th>Code Ref.</th>
</tr>
</thead>
</table>

STEEL LEDGERS

<table>
<thead>
<tr>
<th>Ledger Type</th>
<th>Connector Type</th>
<th>1/4” Dia. Anchors at 12” 8.4” 6.0” 4.6” 3.3” 2.3”</th>
<th>3/16” Dia. Anchors at 12” 8.4” 6.0” 4.6” 3.3” 2.3”</th>
<th>5/32” Dia. Anchors at 12” 8.4” 6.0” 4.6” 3.3” 2.3”</th>
<th>7/32” Dia. Anchors at 12” 8.4” 6.0” 4.6” 3.3” 2.3”</th>
<th>Code Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>50 mm (2”OE)</td>
<td>ICFVL</td>
<td>11 14 14 14 14 14 14 14 14 14</td>
<td>11 14 14 14 14 14 14 14 14 14</td>
<td>11 14 14 14 14 14 14 14 14 14</td>
<td>11 14 14 14 14 14 14 14 14 14</td>
<td>150</td>
</tr>
<tr>
<td>54 mm (2.1/4”)</td>
<td>ICFVL</td>
<td>15 19 19 19 19 19 19 19 19 19</td>
<td>14 18 18 18 18 18 18 18 18 18</td>
<td>14 18 18 18 18 18 18 18 18 18</td>
<td>14 18 18 18 18 18 18 18 18 18</td>
<td>150</td>
</tr>
</tbody>
</table>

Typical Steel Ledger Installation with ICFVL

- Use Simpson 16 ga steel ledger (minimum 5/16” steel ledger)
MASONRY VENEER WITH 6" BuildBlock

SCALE: 1" = 1'-0"

- MASONRY VENEER (VERIFY CODE APPROVED GRADE CLEARANCE FOR PROJECT LOCATION)
- "BuildBlock" 6" I.C.F. UNITS
- GROUT FILL BELOW GRADE
- APPROVED MEMBRANE WATERPROOFING (ALL SURFACES BELOW GRADE)
- REBAR STIRRUPS (SEE DETAIL OR AS ENGINEERED FOR SPECIFIC LOAD)
- "BuildBlock" LEDGE BLOCK
- 1/2" GYP. BD. MIN. OR PER LOCAL CODES
- "BuildBlock" 8" I.C.F. UNITS
- "BuildBlock" SECTION DETAIL

NOTE:

- DUE TO VARIATIONS IN SELECTED PRINTER SETTINGS, NOTED SCALES MAY NO LONGER BE APPLICABLE

BUILD BLOCK® TECHNICAL & INSTALLATION MANUAL PAGE 50

©2017 ALL RIGHTS RESERVED

10-03-07 /4

CONSTRUCTION SHALL BE IN ACCORDANCE WITH ALL APPLICABLE LOCAL AND NATIONAL CODES. ALL DRAWINGS ARE SUBJECT TO CHANGE WITHOUT NOTICE.

9705 N. BROADWAY EXTENSION, SUITE 200, OKLAHOMA CITY, OK 73114

OFFICE: 405-840-3386 | TOLL FREE: 866-222-2575 | FAX: 831-597-0792

BUILDBLOCK.COM
MASONRY WITH 8” *BuildBlock*

MASONRY VENEER (VERIFY CODE APPROVED GRADE CLEARANCE FOR PROJECT LOCATION)

"BuildBlock" 8” I.C.F. UNITS

GROUT FILL BELOW GRADE

APPROVED MEMBRANE WATERPROOFING (ALL SURFACES BELOW GRADE)

REBAR STIRRUPS (SEE DETAIL OR AS ENGINEERED FOR SPECIFIC LOAD)

"BuildBlock" LEDGE BLOCK

1/2” GYP. BD. MIN. OR PER LOCAL CODES

"BuildBlock" 8” I.C.F. UNITS

NOTE:

ALL BENDS PER ANSI & STEEL INSTITUTE STANDARDS — STEEL GRADES AS SPECIFIED — DIMENSIONS TYPICAL FOR ALL LEDGE BLOCK APPLICATIONS

DATE/REV 10-03-07 /4

SCALE NTS DETAIL SHEET

CONSTRUCTION SHALL BE IN ACCORDANCE WITH ALL APPLICABLE LOCAL AND NATIONAL CODES. ALL DRAWINGS ARE SUBJECT TO CHANGE WITHOUT NOTICE.

BUILD BLOCK 8” LEDGE BLOCK APPLICATION 2

BUILD BLOCK

CONSTRUCTION SYSTEMS

9705 N. BROADWAY EXTENSION, SUITE 200, OKLAHOMA CITY, OK 73114
OFFICE: 405-840-3386 | TOLL FREE: 866-222-2575 | FAX: 831-597-0792
BUILD BLOCK.COM

BUILD BLOCK 8” LEDGE BLOCK APPLICATION 2

DATE/REV 10-03-07 /4

SCALE NTS DETAIL SHEET

CONSTRUCTION SHALL BE IN ACCORDANCE WITH ALL APPLICABLE LOCAL AND NATIONAL CODES. ALL DRAWINGS ARE SUBJECT TO CHANGE WITHOUT NOTICE.

17

NOTE:

DUE TO VARIATIONS IN SELECTED PRINTER SETTINGS, NOTED SCALES MAY NO LONGER BE APPLICABLE.
MASONRY VENEER (VERIFY CODE APPROVED GRADE CLEARANCE FOR PROJECT LOCATION)

"BuildBlock" 6” I.C.F. UNITS
GROUT FILL BELOW GRADE
CONTINUOUS THRU-WALL FLASHING
L8 x 6 x 1/2’ (23L.B.F.) MIN. OR AS REQUIRED BY ENGINEERING
4 1/2” Ø MIN. FORM CUT AT ANCHOR BOLT LOCATIONS
ALL OPENINGS SHALL BE 1/2” LESS THAN THE VERTICAL HGT. OF THE APPLIED LEDGE MEMBER CENTER LEDGE ON OPENING
CAST EMBEDDED STEEL ANCHOR BOLTS - SIZE & FREQUENCY PER ENGINEERING SPECIFICATIONS

"BuildBlock" 8” I.C.F. UNITS
MASONRY VENEER (VERIFY CODE APPROVED GRADE CLEARANCE FOR PROJECT LOCATION)

"BuildBlock" 6” I.C.F. UNITS
GROUT FILL BELOW GRADE
FIELD FORM W/ WOOD OR STEEL

"BuildBlock" 8” I.C.F. UNITS
APPROVED WATER PROOFING MEMBRANE

NOTE:
INSTALL APPROVED MEMBRANE WATER-PROOFING AT ALL SURFACES BELOW GRADE EXTEND 12” MIN. ABOVE FINAL GRADE

STIRRUP DETAIL
SCALE: 1” = 1’-0”
#4 SUPPORTING BAR (9 mm)
#3 (10 mm) DEFORMED BAR

BUILDBLOCK 6” & 8” LEDGE BLOCK APPLICATION 3

BUILDBLOCK 6” & 8” LEDGE BLOCK APPLICATION 3

MINIMUM SPACING:
1. VENEER = 1000 lb/ft (15kN/m @ 18” (450mm))
2. VENEER = 1500 lb/ft (22kN/m @ 12” (300mm))

BUILDBLOCK 6” & 8” LEDGE BLOCK APPLICATION 3

FIELD FORMED SECTION DETAIL
SCALE: 1” = 1’-0”

NOTE:
DUE TO VARIATIONS IN SELECTED PRINTER SETTINGS, NOTED SCALES MAY NO LONGER BE APPLICABLE
BuildBlock 6" I.C.F. Units

Steel strap / bracket @ 12" O.C. - secure to web

Remove foam strategically to retain integrity of webbing

- (2) #5(#16-mm) rebar cont.
- #3 (#10-mm) rebar stirrups @ 12" O.C. min. or as engineered for specific load

Removable steel form

BuildBlock 6" I.C.F. Unit

BuildBlock 8" I.C.F. Units

SECTION DETAIL

Scale: 1" = 1'-0"

NOTE:

Due to variations in selected printer settings, noted scales may no longer be applicable.
PERMEABLE BACK-FILL

WATERPROOFING / DRAINAGE SYSTEM (REFER TO DETAIL SHEET 33)

CONCRETE SLAB – REINFORCING PER CONSTRUCTION DRAWINGS

6 MIL POLY VAPOR BARRIER AS REQUIRED

GRANULAR FILL

“CACTUS BOARD” FLOOR EDGE AS MANUFACTURED BY BASEMENT SYSTEMS INC. – INSTALL PER MFG’S SPECS. – FOR ADDITIONAL INFORMATION REFER TO OUR WEBSITE UNDER PRODUCTS OR CONTACT THE MANUFACTURER AT 1-800-768-0935 – (WEB-CACTUSBOARD.COM)

CONTINUOUS KEYWAY & WATER STOP
BASEMENT FINISHED FLOOR

TOP OF FOOTING ELEV.

“FORM-A-RAIN FOUNDATION” DRAINAGE SYSTEM AS MFG’S
BY CERTAINTIED INC. – 2-SIDED
W/ CROSS OVER DRAINAGE – REFER TO CONSTRUCTION SPECS
FOR COMPONENT SIZES – INSTALL PER MANUFACTURERS
RECOMMENDATIONS
FOR ADDITIONAL INFORMATION SEE OUR WEB SITE UNDER PRODUCTS – BASEMENT AND FORM-A-RAIN

@ FOOTING - DIMENSIONS SHOWN ARE MIN. STANDARD – ADJUST AS REQUIRED FOR SOIL CONDITIONS AND PER LOCAL CODES

NOTE:
INSTALL APPROVED MEMBRANE WATER-PROOFING AT ALL SURFACES BELOW GRADE EXTEND 12" MIN. ABOVE FINAL GRADE

NOTE:
DUE TO VARIATIONS IN SELECTED PRINTER SETTINGS, NOTED SCALES MAY NO LONGER BE APPLICABLE

BUILDING SYSTEMS
9705 N. BROADWAY EXTENSION, SUITE 200, OKLAHOMA CITY, OK 73114 OFFICE: 405-840-3386 | TOLL FREE: 866-222-2575 | FAX: 831-597-0792
BUILD BLOCK.COM

CONSTRUCTION SHALL BE IN ACCORDANCE WITH ALL APPLICABLE LOCAL AND NATIONAL CODES. ALL DRAWINGS ARE SUBJECT TO CHANGE WITHOUT NOTICE.

BUILDBLOCK BASEMENT FOUNDATION
DATE/REV 12-01-04 /1 SCALE NTS DETAIL SHEET
NOTES

20
WOOD FRAME CORNICE
PER CONSTRUCTION DETAILS

AIR SPACE
1" ~ 1 1/2"

FRAME SOLE PLATE INTERSECTION

BASEMENT FOUNDATION

TYPICAL WALL SECTION
SCALE: 3/4" = 1'-0"

NOTE:
DUE TO VARIATIONS IN SELECTED PRINTER SETTINGS, NOTED SCALES MAY NO LONGER BE APPLICABLE
BUILDING SYSTEMS

WOOD FRAME PER CONSTRUCTION DRAWINGS
BRICK VENEER PER SPEC.
FIN. FLR. ELE. 100'-0" (DATUM)
AIR SPACE
CONTINUOUS FLASHING IN CAST EMBEDDED REGLET W/ SEALANT
WEEP HOLES 33" O.C. MAX PER SECTION 703.7.6 OF THE IRC 2003 CODE
SLOPE FINISHED GRADE AWAY FROM BUILDING

#3 (#10-mm) STIRRUPS @ 18"
O.C. & (2) #4 (#13-mm) REBAR CONTINUOUS — VERIFY FOR MASONRY LOAD APPLICATION AND LOCAL CODES
REPLACE PORTION OF BLOCK (50% OR LESS) & FIELD FORM FOR BRICK LEDGE (DECORATIVE FORM LINER MAY BE ADDED)

"BuildBlock" 8" UNITS — REINFORCING PER SPECIFICATIONS

NOTE:
INSTALL APPROVED MEMBRANE WATER-PROOFING AT ALL SURFACES BELOW GRADE EXTEND 12" MIN. ABOVE FINAL GRADE

SILL PLATE
TOTAL WALL SECTION
WOOD FLOOR SYSTEM PER CONSTRUCTION DRAWINGS
RIM JOIST
WOOD SOLE PLATE
ANCHOR BOLTS PER SPECS.

NOTE:
DUE TO VARIATIONS IN SELECTED PRINTER SETTINGS, NOTE SCALES MAY NO LONGER BE APPLICABLE

FRAME SOLE PLATE INTERSECTION

DATE/REV 10-04-07 /4
SCALE NTS
DETAIL SHEET
NOTES

CONSTRUCTION SHALL BE IN ACCORDANCE WITH ALL APPLICABLE LOCAL AND NATIONAL CODES. ALL DRAWINGS ARE SUBJECT TO CHANGE WITHOUT NOTICE.

9705 N. BROADWAY EXTENSION, SUITE 200, OKLAHOMA CITY, OK 73114
OFFICE: 405-840-3386 | TOLL FREE: 866-222-2575 | FAX: 831-597-0792
BUILDBLOCK.COM
CONSTRUCTION SHALL BE IN ACCORDANCE WITH ALL APPLICABLE LOCAL AND NATIONAL CODES. ALL DRAWINGS ARE SUBJECT TO CHANGE WITHOUT NOTICE.
NOTES:

1. VARIATIONS IN IMPOSED LIVE & DEAD LOADS AND OTHER APPLICATION SPECIFIC VARIABLES REQUIRE ALL ASPECTS OF THE DETAILS SHOWN HERE TO BE DESIGNED AND / OR APPROVED BY A QUALIFIED ENGINEER.

2. ALL CONSTRUCTION SHALL BE IN ACCORDANCE WITH THE SPECIFICATION OF AND THE RESPONSIBILITY OF A QUALIFIED STRUCTURAL ENGINEER.

3. INSTALL APPROVED MEMBRANE WATER-PROOFING AT ALL SURFACES BELOW GRADE EXTEND 12" MIN. ABOVE FINAL GRADE.

NOTE:
DUE TO VARIATIONS IN SELECTED PRINTER SETTINGS, NOTED SCALES MAY NO LONGER BE APPLICABLE.
BUILDING SYSTEMS

WOOD FRAME PER CONSTRUCTION DRAWINGS

SUBSTRATE AS REQUIRED

FIN. FLR. ELE. 100’-0” (DATUM)

STUCCO, "DRYVIT" OR OTHER CEMENTOUS POLYMER COATING PER CONSTRUCTION SPECIFICATIONS

"BuildBlock" 6" TAPER UNITS (OPTIONAL) OTHERWISE USE STANDARD BLOCKS REINFORCING PER ENGINEERING

ANCHOR BOLTS

SIZE 10"

SLOPE FINISHED GRADE AWAY FROM BUILDING

"BuildBlock" 6" OR 8" UNITS – REINFORCING PER SPECIFICATIONS

1-6" VERTICAL REBAR PER DESIGN – SEE ENGINEERING GUIDELINES – SPACE PINS EQ.
W/ VERTICAL STEEL IN WALLS

CONCRETE FOOTING – REINFORCING PER CONSTRUCTION DRAWINGS

WOOD SOLE PLATE

CRAWL SPACE

CUT & BOX OUT FORMS AT REQUIRED CODE
ACCESS & VENTILATION PANELS
APPROVED 15 MINUTE FIRE BARRIER WHERE REQUIRED BY CODE

NOTES:

1. VARIATIONS IN IMPOSED LIVE & DEAD LOADS AND OTHER APPLICATION SPECIFIC VARIABLES REQUIRE ALL ASPECTS OF THE DETAILS SHOWN HERE TO BE DESIGNED AND /OR APPROVED BY A QUALIFIED ENGINEER

2. ALL CONSTRUCTION SHALL BE IN ACCORDANCE W/ THE SPECIFICATION OF AND THE RESPONSIBILITY OF A QUALIFIED STRUCTURAL ENGINEER.

3. INSTALL APPROVED MEMBRANE WATER-PROOFING AT ALL SURFACES BELOW GRADE EXTEND 12” MIN. ABOVE FINAL GRADE

NOTE:

DUE TO VARIATIONS IN SELECTED PRINTER SETTINGS, NOTED SCALES MAY NO LONGER BE APPLICABLE

DETAIL CROSS SECTION

WOOD FRAME STUCCO ON BUILDBLOCK CRAWL SPACE

DATE/REV 11-17-09

SCALE NTS

DETAIL SHEET

NOTES

CONSTRUCTION SHALL BE IN ACCORDANCE WITH ALL APPLICABLE LOCAL AND NATIONAL CODES. ALL DRAWINGS ARE SUBJECT TO CHANGE WITHOUT NOTICE.

23B
STUCCO ON BUILDBLOCK & CRAWL SPACE

1. VARIATIONS IN IMPOSED LIVE & DEAD LOADS AND OTHER APPLICATION SPECIFIC VARIABLES REQUIRE ALL ASPECTS OF THE DETAILS SHOWN HERE TO BE DESIGNED AND/OR APPROVED BY A QUALIFIED ENGINEER.

2. ALL CONSTRUCTION SHALL BE IN ACCORDANCE W/ THE SPECIFICATION OF AND THE RESPONSIBILITY OF A QUALIFIED STRUCTURAL ENGINEER.

3. INSTALL APPROVED MEMBRANE WATER-PROOFING AT ALL SURFACES BELOW GRADE EXTEND 12" MIN. ABOVE FINAL GRADE.

NOTE:
DUE TO VARIATIONS IN SELECTED PRINTER SETTINGS, NOTED SCALES MAY NO LONGER BE APPLICABLE.
NOTES:

1. VARIATIONS IN IMPOSED LIVE & DEAD LOADS AND OTHER APPLICATION SPECIFIC VARIABLES REQUIRE ALL ASPECTS OF THE DETAILS SHOWN HERE TO BE DESIGNED AND/or APPROVED BY A QUALIFIED ENGINEER.

2. ALL CONSTRUCTION SHALL BE IN ACCORDANCE W/ THE SPECIFICATION OF AND THE RESPONSIBILITY OF A QUALIFIED STRUCTURAL ENGINEER.

3. INSTALL APPROVED MEMBRANE WATER-PROOFING AT ALL SURFACES BELOW GRADE EXTEND 12" MIN. ABOVE FINAL GRADE.
ICF LEDGER CONNECTOR SYSTEM AS MFG. BY "SIMPSON STRONG–TIE INC."

FLOOR SYSTEM PER
CONSTRUCTION DRAWINGS

CONTINUOUS LEDGER BOARD

AIR SPACE

BRICK VENEER PER SPEC.

APPROVED JOIST HANGER

OVERLAP 40 DIAMETERS

SLOPE FINISHED GRADE AWAY FROM BUILDING

"BuildBlock" 6" OR 8"

UNITS – REINFORCING PER SPECIFICATIONS

VERTICAL REBAR PER
DESIGN – SEE ENGINEERING
GUIDELINES – SPACE PINS EQ.
W/ VERTICAL STEEL IN WALLS

CONCRETE FOOTING –
REINFORCING PER
CONSTRUCTION
DRAWINGS

NOTES:

1. VARIATIONS IN IMPOSED LIVE & DEAD LOADS AND OTHER APPLICATION SPECIFIC VARIABLES REQUIRE ALL ASPECTS OF THE DETAILS SHOWN HERE TO BE DESIGNED AND /OR APPROVED BY A QUALIFIED ENGINEER.

2. ALL CONSTRUCTION SHALL BE IN ACCORDANCE W/ THE SPECIFICATION OF AND THE RESPONSIBILITY OF A QUALIFIED STRUCTURAL ENGINEER.

3. INSTALL APPROVED MEMBRANE WATER-PROOFING AT ALL SURFACES BELOW GRADE EXTEND 12" MIN. ABOVE FINAL GRADE

NOTE:

DUE TO VARIATIONS IN SELECTED PRINTER SETTINGS, NOTED SCALES MAY NO LONGER BE APPLICABLE

DETAIL CROSS SECTION

SCALE: 1" = 1'-0"

BRICK ON BUILDBLOCK CRAWL SPACE
BUILDING SYSTEMS

WOOD FRAME PER CONSTRUCTION DRAWINGS

SUBSTRATE AS REQUIRED

FIN. FLR. ELE. 100'-0" (DATUM)
STUCCO, "DRYVIT" OR OTHER CEMENTOUS POLYMER COATING
PER CONSTRUCTION SPECIFICATIONS
"BuildBlock" 8" TAPER UNITS (OPTIONAL)
OTHERWISE USE STANDARD BLOCKS REINFORCING PER ENGINEERING

SLOPE FINISHED GRADE AWAY FROM BUILDING

ANCHOR BOLTS SIZE 10"

"BuildBlock" 8" UNITS
REINFORCING PER SPECIFICATIONS

NOTE:
DUE TO VARIATIONS IN SELECTED PRINTER SETTINGS, NOTED SCALES MAY NO LONGER BE APPLICABLE

TOTAL WALL SECTION
SILL PLATE

WOOD FLOOR SYSTEM PER CONSTRUCTION DRAWINGS
RIM JOIST
WOOD SOLE PLATE

NOTES:
1. VARIATIONS IN IMPOSED LIVE & DEAD LOADS AND OTHER APPLICATION SPECIFIC VARIABLES REQUIRE ALL ASPECTS OF THE DETAILS SHOWN HERE TO BE DESIGNED AND/OR APPROVED BY A QUALIFIED ENGINEER
2. ALL CONSTRUCTION SHALL BE IN ACCORDANCE W/ THE SPECIFICATION OF AND THE RESPONSIBILITY OF A QUALIFIED STRUCTURAL ENGINEER.
3. INSTALL APPROVED MEMBRANE WATER-PROOFING AT ALL SURFACES BELOW GRADE EXTEND 12" MIN. ABOVE FINAL GRADE

1
20
BASEMENT FOUNDATION
BUILDING SYSTEMS

BUILDBLOCK ON PIERS 1

DATE/REV: 11-28-06 /3

GENERAL DETAIL NOTES:

1. PROVIDE 4” STANDARD CARDBOARD CARTON FORMS UNDER ALL GRADE BEAMS BETWEEN PIERS.
2. ALL CONCRETE 3000 P.S.I. AT 28 DAYS.
3. REINFORCING GRADES, LAP SPACING, CLEARANCES, MIN. CONCRETE COVER AND ALL ASPECTS OF THE WORK DETAILED HERE SHALL FOLLOW NATIONAL STANDARDS AND PRACTICES FOR CONCRETE STEEL REINFORCING AS PRESCRIBED BY ASTM, THE CONCRETE STEEL REINFORCING INSTITUTE, AND / OR OTHER LOCAL CODE USE GUIDELINES.

NOTE:

CONSTRUCTION SHALL BE IN ACCORDANCE WITH ALL APPLICABLE LOCAL AND NATIONAL CODES. ALL DRAWINGS ARE SUBJECT TO CHANGE WITHOUT NOTICE.

BUILDBLOCK TECHNICAL & INSTALLATION MANUAL PAGE 64 Revised 5/2017

©2017 ALL RIGHTS RESERVED
NOTE:
INSTALL APPROVED MEMBRANE WATER-PROOFING AT ALL SURFACES BELOW GRADE EXTEND 12" MIN. ABOVE FINAL GRADE
MASONRY VENEER (VERIFY CODE APPROVED GRADE CLEARANCE FOR PROJECT LOCATION)
AIR SPACE
GROUT FILL BELOW GRADE
WEEP HOLES 33" O.C. MAX. PER SECTION 703.7.6 OF THE IRC 2003 CODE
ELE. 100'-0" FIN. FLR. (DAMAT)
SLOPE FINISHED GRADE AWAY FROM BUILDING
#3 (#10-mm) STIRRUPS @ 18" O.C. & (2) #5 (#16-mm) REBAR CONTINUOUS – VERIFY FOR MASONRY LOAD APPLICATION AND LOCAL CODES
REMOVE PORTION OF BLOCK (50% OR LESS) & FIELD FORM FOR BRICK LEDGE (ALTERNATELY FORM MAY BE TAPERED)
FOUNDATION DRAINAGE SYSTEMS ONLY AS REQUIRED BY SOIL CONDITIONS
DRILLED PIER TO REFUSAL & TO PENETRATE 2'-0" MIN. INTO SHALE – REINF. W/ STEEL CAGE CONSISTING OF (4) #5 (#16-mm) REBAR VERTICAL & #3 (#10-mm) REBAR HORIZONTAL @ 1'-0" O.C. FULL LENGTH OF PIER SHAFT – EXTEND VERTICALS ABOVE PIER A MIN. OF 2/3 THE HEIGHT OF RESPECTIVE GRADE BEAMS, TO BE CAST INSIDE GRADE BEAM
DRIVEN PILES OR OTHER ENGINEERED PIER SYSTEM MAY BE USED IN LIEU OF DRILLED CONCRETE PIER SYSTEMS – (PER CONSTRUCTION DRAWING REQUIREMENTS)

GENERAL DETAIL NOTES:
1. PROVIDE 4" STANDARD CARDBOARD CARTON FORMS UNDER ALL GRADE BEAMS BETWEEN PIERS.
2. ALL CONCRETE 3000 P.S.I. AT 28 DAYS.
3. REINFORCING GRADES, LAP SPACING, CLEARANCES, MIN. CONCRETE COVER AND ALL ASPECTS OF THE WORK DETAILED HERE SHALL FOLLOW NATIONAL STANDARDS AND PRACTICES FOR CONCRETE STEEL REINFORCING AS PRESCRIBED BY ASTM, THE CONCRETE REINFORCING INSTITUTE, AND / OR OTHER LOCAL CODE USE GUIDELINES.

BUILDBLOCK ON PIERS 2

NOTE:
DUE TO VARIATIONS IN SELECTED PRINTER SETTINGS, NOTED SCALES MAY NO LONGER BE APPLICABLE

BUILD BLOCK BUILDING SYSTEMS
9705 N. BROADWAY EXTENSION, SUITE 200, OKLAHOMA CITY, OK 73114 OFFICE: 405-640-3386 | TOLL FREE: 866-222-2575 | FAX: 831-597-0792 BUILDBLOCK.COM
CONSTRUCTION SHALL BE IN ACCORDANCE WITH ALL APPLICABLE LOCAL AND NATIONAL CODES. ALL DRAWINGS ARE SUBJECT TO CHANGE WITHOUT NOTICE.
GENERAL DETAIL NOTES:
1. PROVIDE 4" STANDARD CARDBOARD CARTON FORMS UNDER ALL GRADE BEAMS BETWEEN PIERS.
2. ALL CONCRETE 3000 P.S.I. AT 28 DAYS.
3. REINFORCING GRADES, LAP SPACING, CLEARANCES, MIN. CONCRETE COVER AND ALL ASPECTS OF THE WORK DETAILED HERE SHALL FOLLOW NATIONAL STANDARDS AND PRACTICES FOR CONCRETE STEEL REINFORCING AS PRESCRIBED BY ASTM, THE CONCRETE STEEL REINFORCING INSTITUTE, AND/OR OTHER LOCAL CODE USE GUIDELINES.

MASONRY VENEER (VERIFY CODE APPROVED GRADE CLEARANCE FOR PROJECT LOCATION)

AIR SPACE
1ST FIN. FLOOR ELEV. 100'—0" (DATUM)

6"
SLOPE FINISHED GRADE AWAY FROM BUILDING

WEEP HOLES 3" O.C. MAX PER SECTION 703.7.6 OF THE IRC 2003 CODE
GROUT FILL BELOW GRADE

"BuildBlock" 6" I.C.F. UNITS

LEDGE BLOCK

LEDBLOCK STIRRUPS #3 (#10-mm)
REBAR @ 18" O.C. & (2) #4 (#13-mm)
CONTINUOUS HORIZONTAL

GRADE BEAM STIRRUPS #3 (#10-mm)
REBAR @ 18" O.C. & (4) #4 (#13-mm)
CONTINUOUS HORIZONTAL

8"
VERIFY ALL REINFORCING FOR MASONRY LOAD APPLICATION AND LOCAL CODES — MODIFY AS REQUIRED

HFAULED PIER TO REFUSAL & TO PERENETRATE 2'—0" MIN. INTO SHALE — REINF. W/ STEEL CAGE CONSISTING OF (4) #5 (#16-MM) REBAR VERTICAL AND #3 (#10-mm) REBAR HORIZONTAL @ 1'—0" O.C. FULL LENGTH OF PIER SHAFT — EXTEND VERTICALS ABOVE PIER A MINIMUM OF 2/3 THE HEIGHT OF RESPECTIVE GRADE BEAMS, TO BE CAST INSIDE GRADE BEAM

NOTE:
PIER / BEAM — REFER TO FOUNDATION PLAN FOR SPACING REQUIREMENTS

NOTE:
INSTALL APPROVED MEMBRANE WATER-PROOFING AT ALL SURFACES BELOW GRADE EXTEND 12" MIN. ABOVE FINAL GRADE

NOTE:
DUE TO VARIATIONS IN SELECTED PRINTER SETTINGS, NOTED SCALES MAY NO LONGER BE APPLICABLE
GENERAL DETAIL NOTES:

1. FOOTING STEPS ARE RECOMMENDED TO BE IN INCREMENTS OF 6” HORIZONTALLY AND 8” (HALF BLOCKS) OR 16” VERTICALLY TO MATCH "BUILD BLOCK" VERTICAL COURSING.

2. BOTTOM OF FOOTING SLOPE PERCENTAGE SHALL CONFORM TO ALL PRESCRIBED LOCAL BUILDING CODES AND STANDARDS

3. ALL FOOTING REINFORCING PER CONSTRUCTION DRAWINGS AND SPECIFICATIONS — VERTICAL TIE BARS REQUIRED

NOTE:
DUE TO VARIATIONS IN SELECTED PRINTER SETTINGS, NOTED SCALES MAY NO LONGER BE APPLICABLE
POURED CONCRETE WALL

REBAR LAPPED TO EA. HORIZONTAL REINFORCEMENT IN "BuildBlock" UNITS – CAST EMBEDDED IN CONCRETE WALL

"BuildBlock" 6” OR 8” I.C.F. UNITS EXPANSION JOINT AS REQUIRED EXTERIOR FINISH

PLAN SECTION – CONCRETE WALL INTERSECTIONS
SCALE: 1” = 1'-0"

C.M.U. WALL

REBAR LAPPED TO EA. HORIZONTAL REINFORCEMENT IN "BuildBlock" UNITS – CAST EMBEDDED IN C.M.U CELLS W/ GROUT FILL.

"BuildBlock" 6” OR 8” I.C.F. UNITS EXPANSION JOINT AS REQUIRED EXTERIOR FINISH

PLAN SECTION
C.M.U. INTERSECTIONS
SCALE: 1” = 1'-0"

"BuildBlock" 6” OR 8” I.C.F. UNITS
"BuildBlock" 6” OR 8” CORNER BLOCK PROVIDE CONT. 3/4” SCH. 40 P.V.C PIPE THRU CORNER GROMMETS FOR ADDITIONAL FASTENER BASE

FOAM SEALER

FRAME WALL
LAP SHEATHING OVER I.C.F. 6” MIN. W/ AN APPROVED CAULK SEALANT FASTEN W/ SCREWS THRU CORNER WEB EXTERIOR FINISH

PLAN SECTION
FRAME INTERSECTIONS
SCALE: 1” = 1'-0"

NOTE:
DUE TO VARIATIONS IN SELECTED PRINTER SETTINGS, NOTED SCALES MAY NO LONGER BE APPLICABLE

HORIZONTAL INTERSECTION

DATE/REV 12-01-04 /1 SCALE NTS DETAIL SHEET
NOTES

CONSTRUCTION SHALL BE IN ACCORDANCE WITH ALL APPLICABLE LOCAL AND NATIONAL CODES. ALL DRAWINGS ARE SUBJECT TO CHANGE WITHOUT NOTICE.

28
VERTICALLY BRACE BLOCK CONTINUOUSLY AT INTERSECTION DURING POUR

"BuildBlock" 6" OR 8" I.C.F. UNITS REINFORCING PER SPECIFICATIONS

REMOVE PORTION OF FORM EQUAL TO BLOCK DIMENSION

90° BENT BAR – LAP EQUAL TO 40 DIAMETERS MINIMUM AT EACH HORIZONTAL COURSE OF REBAR

NOTE:

FOR ADDITIONAL STRENGTH, A FOAM ADHESIVE MAY BE USED TO JOIN INTERSECTING BLOCKS

OPTION 1

SCALE: 1" = 1'-0"

OPTION 2

SCALE: 1" = 1'-0"

NOTE:

DUE TO VARIATIONS IN SELECTED PRINTER SETTINGS, NOTED SCALES MAY NO LONGER BE APPLICABLE
TYPICAL CUT-OUTS SHALL BE PLACED BETWEEN WEBBING TO RETAIN THE INTEGRITY OF THE FORM. ALL OPENINGS SHALL BE 1/2" LESS THAN THE VERTICAL HGT. OF THE APPLIED LEDGE MEMBER - CENTER LEDGE ON OPENING.

NOTE:
ATTACH CONTINUOUS WOOD CLEAT TO WEBBING W/ ADEQUATE SCREWS TO PROVIDE A DAM DURING CONCRETE POUR.

CAST EMBEDDED ANCHOR BOLTS - TYPE & FREQUENCY AS REQUIRED BY APPLICATION LOAD
2X6 MIN. DIMENSIONAL LUMBER (CONTINUOUS)
CUT AND REMOVE REQUIRED PORTION OF FORM TO EXTEND CONCRETE CORE TO WOOD CLEAT (CONTINUOUS CONTACT) - DO NOT CUT OPENING THROUGH WEBBING
"BuildBlock" 6" OR 8" I.C.F. UNITS

VERTICAL SECTION
MODERATE & HEAVY LOADS
SCALE: 1" = 1'-0"
"BuildBlock" 6" OR 8" I.C.F. UNITS
CUT AND REMOVE REQUIRED PORTION OF FORM TO RECEIVE WOOD NAILER POST CONCRETE POUR
2X_ DIMENSIONAL LUMBER ATTACHED W/ POWDER ACTUATED FASTENERS
PLYWOOD OR OTHER WOOD FILLER FLUSH TO FORM FACE - FASTEN TO 2X_ NAILER

VERTICAL SECTION
LIGHT & MODERATE LOADS
SCALE: 1" = 1'-0"

NOTE:
DUE TO VARIATIONS IN SELECTED PRINTER SETTINGS, NOTED SCALES MAY NO LONGER BE APPLICABLE.
GENERAL DETAIL NOTES:

1. DEFORMED REINFORCING BARS SHALL BE SET IN INCREMENTS OF 6" OR MULTIPLES THEREOF – BAR SIZES AS SPECIFIED

2. REINFORCING GRADES, LAP SPACING, CLEARANCES, MIN. CONCRETE COVER AND ALL ASPECTS OF THE WORK DETAILED HERE SHALL FOLLOW NATIONAL STANDARDS AND PRACTICES FOR CONCRETE STEEL REINFORCING AS PRESCRIBED BY ASTM, THE CONCRETE STEEL REINFORCING INSTITUTE, AND / OR OTHER LOCAL CODE USE GUIDELINES.

NOTE:
DUE TO VARIATIONS IN SELECTED PRINTER SETTINGS, NOTED SCALES MAY NO LONGER BE APPLICABLE
Continuous No. 4 Bar (Minimum) as Required

Center Distance, A, Not Required Stirrups

Lintel Reinforcement as Required

Side bars required within 24” from opening

2’ or less
No header or side rebar required

\[l < 2' \]

\[(0.61 \text{mm}) \]

\[l \geq 2' \]

\[(0.61 \text{mm}) \]

Wall Reinforcement as Required
See engineering

Opening Reinforcement as Required

CONSTRUCTION SHALL BE IN ACCORDANCE WITH ALL APPLICABLE LOCAL AND NATIONAL CODES. ALL DRAWINGS ARE SUBJECT TO CHANGE WITHOUT NOTICE.
FLAT ICF LINTEL & STIRRUP CONSTRUCTION

CONSTRUCTION SHALL BE IN ACCORDANCE WITH ALL APPLICABLE LOCAL AND NATIONAL CODES. ALL DRAWINGS ARE SUBJECT TO CHANGE WITHOUT NOTICE.

DATE/REV 11-17-09 SCALE NTS DETAIL SHEET

NOTES

30B
UNLESS OTHER WISE SPECIFIED (2) #5 (#16-mm) REBAR SHALL BE PLACED AT ALL OPENINGS – JAMBS, SILL & HEAD (PERIMETER) – REFER TO DIAGRAM FOR ADDITIONAL CORNER REINFORCING REQUIREMENTS – ALL HORZ. SHALL EXTEND 12” MIN. PAST OPENING

WINDOW OPENINGS

DATE/REV 11-28-06 /2 SCALE NTS DETAIL SHEET

NOTES

CONSTRUCTION SHALL BE IN ACCORDANCE WITH ALL APPLICABLE LOCAL AND NATIONAL CODES. ALL DRAWINGS ARE SUBJECT TO CHANGE WITHOUT NOTICE.

©2017 ALL RIGHTS RESERVED

BUILDING SYSTEMS

9705 N. BROADWAY EXTENSION, SUITE 200, OKLAHOMA CITY, OK 73114 OFFICE: 405-840-3386 | TOLL FREE: 866-222-2575 | FAX: 831-597-0792

BUILDBLOCK.COM
GENERAL DETAIL NOTES:

1. ALL PLUMBING, CONDUIT, AND SHEATHED WIRE ROUTES SHOULD BE PRE-MARKED AND CUT WITH ROUTER, HOT KNIFE OR ELECTRIC SOLDERING GUN.

2. INSTALLATION OF 1” OR LESS ARE PREFERRED TO BE PLACED IN THE 1” AREA OF HORIZONTAL COURSING WHICH CONTAINS NO TABS. AVOID CUTTING TABS AND WEBBING AT ALL POSSIBLE CIRCUMSTANCES.

NOTE:
DUE TO VARIATIONS IN SELECTED PRINTER SETTINGS, NOTED SCALES MAY NO LONGER BE APPLICABLE.
GENERAL DETAIL NOTES:
1. ALTERNATE WATERPROOFING PRODUCTS WITH EQUAL OR GREATER SPECIFICATIONS MAY BE USED.
2. FOLLOW ALL MANUFACTURER’S INSTALLATION DETAILS AND SPECIFICATIONS.

INSTALL WATERPROOFING BY MECHANICALLY ATTACHING A THIN FURRING STRIP OF PLASTIC OR METAL 6” - 12” ABOVE GRADE. IT IS ALSO POSSIBLE TO USE BASKET SCREWS SPACED 12” O.C. MAXIMUM. THIS ENSURES THE ADHESIVE HAS ADEQUATE TIME TO BOND TO THE FOAM OR PRIMER. THIS IS CRITICAL IN COLD AND HOT WEATHER OR WHEN SIGNIFICANT TEMPERATURE CHANGES OCCUR, SUCH AS DAYTIME HEATING AND OVERNIGHT COOLING.

*PEEL AND STICK WATERPROOFING SHOULD BE APPLIED SOON AFTER PRIMING THE ICFs.

*ENSURE NO PETROLEUM SOLVENT BASED PRODUCTS ARE EVER IN CONTACT WITH FOAM.

*ANY FILTER FABRIC SHOULD BE INSTALLED TOWARD SOIL.

*INSTALL DIMPLE MEMBRANE WITH DIMPLES TOWARD THE ICF WALL.

DO NOT PUNCTURE PEEL AND STICK WITH FASTENERS FOR DIMPLE MEMBRANE.

SEAL PEEL AND STICK WITH NP-1 AT BASE OF WALL AND AGAINST FOOTING. EXTEND DIMPLE MEMBRANE PAST EDGE OF FOOTING AND OVER FOUNDATION DRAIN TO SHED WATER INTO DRAIN SYSTEM.
"BuildBlock" 6" OR 8" UNITS AS SPECIFIED – REINFORCING PER ENGINEERING

4 1/2"Ø MIN. FORM CUT AT G. ANCHOR BOLT LOCATIONS (OR PER DESIGN REQUIREMENTS)
ALL OPENINGS SHALL BE 1/2" LESS THAN THE VERTICAL HGT. OF THE APPLIED LEDGE MEMBER – CENTER LEDGE ON OPENING

METAL DECK COMPOSITE FLOOR PER CONSTRUCTION DRAWINGS (CONCRETE OVER STEEL DECK)

STEEL ANGLE W/ CAST EMBEDDED ANCHOR BOLTS – ALL DESIGN ELEMENTS PER ENGINEERING

DRYWALL PER SPECS.

ACOUSTICAL CEILING

NOTE:
VARIATIONS IN IMPOSED LIVE & DEAD LOADS AND OTHER APPLICATION SPECIFIC VARIABLE REQUIRE ALL ASPECTS OF THE DETAILS SHOWN HERE TO BE DESIGNED AND/OR APPROVED BY A QUALIFIED ENGINEER

"BuildBlock" 6" OR 8" UNITS AS SPECIFIED – REINFORCING PER ENGINEERING

METAL DECK COMPOSITE FLOOR PER CONSTRUCTION DRAWINGS (CONCRETE OVER STEEL DECK)

CONCRETE LEDGER – DESIGN PER ENGINEERING (FIELD FORMED)

DRYWALL PER SPECS.

ACOUSTICAL CEILING

NOTE:
DUE TO VARIATIONS IN SELECTED PRINTER SETTINGS, NOTED SCALES MAY NO LONGER BE APPLICABLE
"BuildBlock" 6" OR 8" UNITS AS SPECIFIED – REINFORCING PER ENGINEERING

FORM CUT AS REQUIRED AT ANCHOR BOLT LOCATIONS (OR PER DESIGN REQUIREMENTS)

METAL DECK COMPOSITE FLOOR PER CONSTRUCTION DRAWINGS (CONCRETE OVER STEEL DECK)

NOTE:

VARIATIONS IN IMPOSED LIVE & DEAD LOADS AND OTHER APPLICATION SPECIFIC VARIABLE REQUIRE ALL ASPECTS OF THE DETAILS SHOWN HERE TO BE DESIGNED AND /OR APPROVED BY A QUALIFIED ENGINEER

SECOND POUR

FIRST POUR

"BuildBlock" 6" OR 8" UNITS AS SPECIFIED – REINFORCING PER ENGINEERING

METAL DECK COMPOSITE FLOOR PER CONSTRUCTION DRAWINGS (CONCRETE OVER STEEL DECK)

MIN. 4" BEARING PLATE W/ WELDED ANCHOR BOLTS (CAST EMBEDDED)

BAR JOIST AS SPECIFIED

NOTE:
DUE TO VARIATIONS IN SELECTED PRINTER SETTINGS, NOTED SCALES MAY NO LONGER BE APPLICABLE

CONSTRUCTION SHALL BE IN ACCORDANCE WITH ALL APPLICABLE LOCAL AND NATIONAL CODES. ALL DRAWINGS ARE SUBJECT TO CHANGE WITHOUT NOTICE.
"BuildBlock" 6” OR 8” UNITS AS SPECIFIED – REINFORCING PER ENGINEERING
CONCRETE FINISH LAYER AS REQ’D

PRECAST HOLLOW CORE FLOOR PLANK
REBAR FIELD BENT AND GROUTED INTO PLANK JOINTS
ACCOUSTICAL CEILING

SECTION DETAIL PARALLEL TO BEARING
SCALE: 1" = 1’-0"

"BuildBlock" 6” OR 8” UNITS AS SPECIFIED – REINFORCING PER ENGINEERING
CONCRETE FINISH LAYER AS REQ’D

PRECAST HOLLOW CORE FLOOR PLANK
BEARING SURFACE PER ENGINEERING REQ’MTS
REBAR FIELD BENT AND GROUTED INTO PLANK JOINTS
ACCOUSTICAL CEILING

SECTION DETAIL PERPENDICULAR TO BEARING
SCALE: 1" = 1’-0"

NOTE:
DUE TO VARIATIONS IN SELECTED PRINTER SETTINGS, NOTED SCALES MAY NO LONGER BE APPLICABLE
"BuildBlock" 6" or 8" units as specified – reinforcing per engineering

Steel "I", "W", or channel as specified bearing surface per engineering req’mts

Block for pour retention

Weld plate w/ cast embedded anchor bolt

Acoustical ceiling

1 SECTION DETAIL

Scale: 1" = 1'-0"
Construction shall be in accordance with all applicable local and national codes. All drawings are subject to change without notice.
"BuildBlock" 6" OR 8" UNIT AS SPECIFIED

CONCRETE PILASTER FIELD FORMED – REINFORCING & GENERAL DESIGN PER ENGINEERING

REMOVE PORTION OF FORM AS REQUIRED PILASTER DIMENSION – WHERE FORM WEBBING IS REMOVED BRACE THE OPPOSITE SIDE OF THE PILASTER DURING POUR

HORIZONTAL I.C.F. REINFORCING SHALL BE PLACED THROUGH PILASTER REINFORCING

1-39 HORIZONTAL SECTION
SCALE: 1" = 1'-0"

NOTE:
DUE TO VARIATIONS IN SELECTED PRINTER SETTINGS, NOTED SCALES MAY NO LONGER BE APPLICABLE
Please refer to Section 5.7 in the BuildBlock Installation & Technical Manual for additional form and radius sizes.
CUTTING NOTES:

BY FOLLOWING THE PRESCRIBED CUT DIMENSIONS (2) LEDGE BLOCKS WILL YIELD (1) 90° CORNER ASSEMBLY WITH MINIMAL WASTE.

CUTTING DIAGRAM
(TOP VIEW FULL BLOCK)
SCALE: 1" = 1'-0"

DISCARD THIS PORTION

TRIM FOAM IN SHAD ED ARE AS

TRIM WEBBING AS REQUIRED

TRIM FOAM IN SHAD ED ARE AS

NOTE:
DUE TO VARIATIONS IN SELECTED PRINTER SETTINGS, NOTED SCALES MAY NO LONGER BE APPLICABLE

8" LEDGEBLOCK OUTSIDE 90° MITER NO. 1
CUTTING NOTES:

BY FOLLOWING THE PRESCRIBED CUT DIMENSIONS (2) LEDGE BLOCKS WILL YIELD (1 90° CORNER ASSEMBLY WITH MINIMAL WASTE.

CUTTING DIAGRAM
(TOP VIEW FULL BLOCK)
SCALE: 1" = 1'-0"

DISCARD THIS PORTION

3
SCALE: 1" = 1'-0"

TRIM FOAM IN SHAD ED AREAS

TRIM WEBBING AS REQUIRED

2
SCALE: 1" = 1'-0"

TRIM FOAM IN SHAD ED AREAS

1
NO SCALE

NOTE:
DUE TO VARIATIONS IN SELECTED PRINTER SETTINGS, NOTED SCALES MAY NO LONGER BE APPLICABLE
CUTTING NOTES:

A. BY FOLLOWING THE PRESCRIBED CUT DIMENSIONS (2) LEDGE BLOCKS WILL YIELD (1) 90° CORNER ASSEMBLY WITH MINIMAL WASTE.

B. WHEN STACKING 6" BLOCKS ABOVE ON INSIDE MITER REMOVE 2" OF EACH LEFT & RIGHT BLOCKS RESPECTIVELY FOR WEB ALIGNMENT.

CUTTING DIAGRAM

(TOP VIEW FULL BLOCK)

SCALE: 1" = 1'-0"

NOTE:

DUE TO VARIATIONS IN SELECTED PRINTER SETTINGS, NOTED SCALES MAY NO LONGER BE APPLICABLE.
CONSTRUCTION SHALL BE IN ACCORDANCE WITH ALL APPLICABLE
LOCAL AND NATIONAL CODES. ALL DRAWINGS ARE SUBJECT TO
CHANGE WITHOUT NOTICE.

BUILDING SYSTEMS

TRIM WEBBING AS REQUIRED

DISCARD THIS PORTION

CUTTING NOTES:

A. BY FOLLOWING THE PRESCRIBED CUT DIMENSIONS (2) LEDGE BLOCKS WILL YIELD (1) 90° CORNER ASSEMBLY WITH MINIMAL WASTE.

B. WHEN STACKING *4" BLOCKS ABOVE ON INSIDE MITER REMOVE 2" OF EACH LEFT & RIGHT BLOCKS RESPECTIVELY FOR WEB ALIGNMENT.

*4" PRODUCT LINE TO BE AVAILABLE 2007

NOTE:

DUE TO VARIATIONS IN SELECTED PRINTER SETTINGS, NOTED SCALES MAY NO LONGER BE APPLICABLE
CONSTRUCTION SHALL BE IN ACCORDANCE WITH ALL APPLICABLE LOCAL AND NATIONAL CODES. ALL DRAWINGS ARE SUBJECT TO CHANGE WITHOUT NOTICE.

8" LEDGEBLOCK OUTSIDE 90° MITER NO. 2

DATE/REV 03-02-06 /1 SCALE NTS DETAIL SHEET

NOTES

CONSTRUCTION SHALL BE IN ACCORDANCE WITH ALL APPLICABLE LOCAL AND NATIONAL CODES. ALL DRAWINGS ARE SUBJECT TO CHANGE WITHOUT NOTICE.
CUTTING DIAGRAM (TOP VIEW FULL BLOCK)

SCALE: 1 1/2" = 1'-0"

CUTTING NOTES:

BY FOLLOWING THE PRESCRIBED CUT DIMENSIONS EACH LEDGE BLOCK WILL YIELD (1) 90° CORNER ASSEMBLY WITH MINIMAL WASTE.

NOTE:

DUE TO VARIATIONS IN SELECTED PRINTER SETTINGS, NOTED SCALES MAY NO LONGER BE APPLICABLE.

6" LEDGE BLOCK OUTSIDE 90° MITER NO. 2

DATE/REV 03-02-03 /1
SCALE NTS DETAIL SHEET

NOTES

CONSTRUCTION SHALL BE IN ACCORDANCE WITH ALL APPLICABLE LOCAL AND NATIONAL CODES. ALL DRAWINGS ARE SUBJECT TO CHANGE WITHOUT NOTICE.
CUTTING DIAGRAM (TOP VIEW FULL BLOCK)

SCALE: 1 1/2" = 1'-0"

TOP VIEW

SCALE: 1 1/2" = 1'-0"

CUTTING NOTES:
BY FOLLOWING THE PRESCRIBED CUT DIMENSIONS EACH LEDGE BLOCK WILL YIELD (1) 90° CORNER ASSEMBLY WITH MINIMAL WASTE.

NOTE:
DUE TO VARIATIONS IN SELECTED PRINTER SETTINGS, NOTED SCALES MAY NO LONGER BE APPLICABLE.
6" LEDGEBLOCK INSIDE 90° MITER NO. 2

CUTTING DIAGRAM (TOP VIEW FULL BLOCK)
SCALE: 1 1/2" = 1'-0"

CUTTING NOTES:
BY FOLLOWING THE PRESCRIBED CUT DIMENSIONS EACH LEDGE BLOCK WILL YIELD (1) 90° CORNER ASSEMBLY WITH MINIMAL WASTE.

NOTE:
DUE TO VARIATIONS IN SELECTED PRINTER SETTINGS, NOTED SCALES MAY NO LONGER BE APPLICABLE.
MONOLITHIC FOOTING / SLAB WITH STUCCO/EIFS

NOTE:
DUE TO VARIATIONS IN SELECTED PRINTER SETTINGS, NOTED SCALES MAY NO LONGER BE APPLICABLE

TYPICAL FOUNDATION DETAIL
SCALE: 1" = 1'-0"

CONSTRUCTION SHALL BE IN ACCORDANCE WITH ALL APPLICABLE LOCAL AND NATIONAL CODES. ALL DRAWINGS ARE SUBJECT TO CHANGE WITHOUT NOTICE.
CONSTRUCTION SHALL BE IN ACCORDANCE WITH ALL APPLICABLE LOCAL AND NATIONAL CODES. ALL DRAWINGS ARE SUBJECT TO CHANGE WITHOUT NOTICE.
FRAME LINE (FACE OF I.C.F.)

"BuildBlock" 6" I.C.F. UNITS
REINF. SPECIFICATIONS PER
DESIGN — SEE ENGINEERING
GUIDELINES

MASONRY VENEER — BRICK
OR OTHER PER CONSTRUCTION
DRAWINGS

AIR SPACE

VERTICAL REBAR PER
DESIGN — SEE ENGINEERING
GUIDELINES — SPACE PINS EQ.
W/ VERTICAL STEEL IN WALLS

VINYL MOISTURE BARRIER OR
THRU-WALL FLASHING

WEEN HOLES 4'-0" O.C. MIN.
ELE. 100'-0" TOP F.F. (DATUM)

SLOPE FINISHED GRADE
AWAY FROM BUILDING

1'-10"

CONCRETE FOOTING —
REINFORCING PER
CONSTRUCTION
DRAWINGS

MONOLITHIC FOOTING / SLAB
ADJUST DIMENSIONS AS REQUIRED
FOR SOIL CONDITIONS AND PER
LOCAL CODES

1'-4"

1/2" GYP. BOARD MIN.
OR PER LOCAL CODES

CONCRETE SLAB — REINF.
PER CONSTRUCTION DRW'GS

GRANULAR FILL

ANGLE OF REPPOSE

VAPOR BARRIER AS REQ'D

SLAB INSULATION AS REQ'D
— POLYSTYRENE OR
"INSULTARP"

FOR ADDITIONAL INFORMATION
ABOUT "INSULTARP" CONTACT
THEM AT (866) 698-6562
OR ONLINE AT:
WWW.INSULATIONSOLUTIONS.COM

NOTE:
DUE TO VARIATIONS IN SELECTED
PRINTER SETTINGS, NOTED SCALES
MAY NO LONGER BE APPLICABLE

TYPICAL FOUNDATION DETAIL
SCALE: 1" = 1'-0"

MONOLITHIC FOOTING / SLAB BRICK/MASONRY

DATE/REV 07-21-05 /1
SCALE NTS
DETAIL SHEET

NOTES

CONSTRUCTION SHALL BE IN ACCORDANCE WITH ALL APPLICABLE
LOCAL AND NATIONAL CODES. ALL DRAWINGS ARE SUBJECT TO
CHANGE WITHOUT NOTICE.
CUTTING DIAGRAM (TOP VIEW FULL BLOCK)

SCALE: 1 1/2” = 1’-0”

TOP VIEW

SCALE: 1 1/2” = 1’-0”

CUTTING NOTES:
BY FOLLOWING THE PRESCRIBED CUT
DIMENSIONS (1) LEDGE BLOCK WILL
YIELD (1) 45° CORNER ASSEMBLY
WITH MINIMAL WASTE.

NOTE:
DUE TO VARIATIONS IN SELECTED
PRINTER SETTINGS, NOTED SCALES
MAY NO LONGER BE APPLICABLE.

8” LEDGE BLOCK 45° OUTSIDE MITER

DATE/REV 05-04-06

CONSTRUCTION SHALL BE IN ACCORDANCE WITH ALL APPLICABLE
LOCAL AND NATIONAL CODES. ALL DRAWINGS ARE SUBJECT TO
CHANGE WITHOUT NOTICE.

BUILD BLOCK TECHNICAL & INSTALLATION MANUAL
PAGE 96
©2017 ALL RIGHTS RESERVED

8' LEDGEBLOCK 45° OUTSIDE MITER

5' 4' 3' 2' 1' 1' 4 1/2" 1' 3"

DISCARD THIS PORTION

CUT LINE
CUT LINE

©2017 ALL RIGHTS RESERVED

BUILD BLOCK TECHNICAL & INSTALLATION MANUAL
PAGE 96
©2017 ALL RIGHTS RESERVED

8' LEDGEBLOCK 45° OUTSIDE MITER

5' 4' 3' 2' 1' 1' 4 1/2"

DISCARD THIS PORTION

CUT LINE
CUT LINE

©2017 ALL RIGHTS RESERVED

BUILD BLOCK TECHNICAL & INSTALLATION MANUAL
PAGE 96
©2017 ALL RIGHTS RESERVED
CUTTING DIAGRAM (TOP VIEW FULL BLOCK)

SCALE: 1 1/2" = 1'-0"

NOTE:
DUE TO VARIATIONS IN SELECTED PRINTER SETTINGS, NOTED SCALES MAY NO LONGER BE APPLICABLE

CUTTING NOTES:
BY FOLLOWING THE PRESCRIBED CUT DIMENSIONS (1) LEDGE BLOCK WILL YIELD (1) 45° CORNER ASSEMBLY WITH MINIMAL WASTE.

8" LEDGEBLOCK 45° INSIDE MITER

DATE/REV 05-04-06 SCALE NTS DETAIL SHEET
NOTES

CONSTRUCTION SHALL BE IN ACCORDANCE WITH ALL APPLICABLE LOCAL AND NATIONAL CODES. ALL DRAWINGS ARE SUBJECT TO CHANGE WITHOUT NOTICE.
CUTTING NOTES:
BY FOLLOWING THE PRESCRIBED CUT DIMENSIONS (1) LEDGE BLOCK WILL YIELD (1) 45° CORNER ASSEMBLY WITH MINIMAL WASTE.

NOTE:
DUE TO VARIATIONS IN SELECTED PRINTER SETTINGS, NOTED SCALES MAY NO LONGER BE APPLICABLE
6" LEDGEBLOCK 45° OUTSIDE MITER

DATE/REV: 05-04-06

SCALE: 1 1/2" = 1'-0"

NOTE:
DUE TO VARIATIONS IN SELECTED PRINTER SETTINGS, NOTED SCALES MAY NO LONGER BE APPLICABLE

CONSTRUCTION SHALL BE IN ACCORDANCE WITH ALL APPLICABLE LOCAL AND NATIONAL CODES. ALL DRAWINGS ARE SUBJECT TO CHANGE WITHOUT NOTICE.

CUTTING DIAGRAM (TOP VIEW FULL BLOCK)
SCALE: 1 1/2" = 1'-0"

CUTTING NOTES:
BY FOLLOWING THE PRESCRIBED CUT DIMENSIONS (1) LEDGE BLOCK WILL YIELD (1) 45° CORNER ASSEMBLY WITH MINIMAL WASTE.
BUILDING SYSTEMS

DATE/REV: 09-30-07/2

NOTES:

1. VARIATIONS IN IMPOSED LIVE & DEAD LOADS AND OTHER APPLICATION SPECIFIC VARIABLES REQUIRE ALL ASPECTS OF THE DETAILS SHOWN HERE TO BE DESIGNED AND APPROVED BY A QUALIFIED ENGINEER.

2. ALL CONSTRUCTION SHALL BE IN ACCORDANCE WITH THE SPECIFICATION OF AND THE RESPONSIBILITY OF A QUALIFIED STRUCTURAL ENGINEER.

NOTE:

DUE TO VARIATIONS IN SELECTED PRINTER SETTINGS, NOTED SCALES MAY NO LONGER BE APPLICABLE.

SCALE: 1" = 1'-0"

BUILDBlock 6" OR 8" UNITS AS SPECIFIED – REINFORCING PER ENGINEERING

CONCRETE FINISH LAYER AS REQ'D

REBAR FIELD BENT AND GROUTED INTO PLANK JOINTS

PRECAST HOLLOW CORE FLOOR PLANK – BEARING SURFACE PER ENGINEERING REQ'MTS

INSTALL STIRRUPS IN ALTERNATING DIRECTION (SPACING AS SPECIFIED)

FINISH WITH APPROVED 15 MINUTE FIRE BARRIER OR 1/2 INCH GYPSUM BOARD

SECTION DETAIL

SCALE: 1" = 1'-0"

TAPER UNIT & CORE SLAB

DATE/REV: 09-30-07/2

SCALE: 1/52

NOTES:

CONSTRUCTION SHALL BE IN ACCORDANCE WITH ALL APPLICABLE LOCAL AND NATIONAL CODES. ALL DRAWINGS ARE SUBJECT TO CHANGE WITHOUT NOTICE.
NOTES:

1. VARIATIONS IN IMPOSED LIVE & DEAD LOADS AND OTHER APPLICATION SPECIFIC VARIABLES REQUIRE ALL ASPECTS OF THE DETAILS SHOWN HERE TO BE DESIGNED AND / OR APPROVED BY A QUALIFIED ENGINEER.

2. ALL CONSTRUCTION SHALL BE IN ACCORDANCE WITH THE SPECIFICATION OF AND THE RESPONSIBILITY OF A QUALIFIED STRUCTURAL ENGINEER.

SECTION DETAIL

SCALE: 1" = 1'-0"

STIRRUP DETAIL

SCALE: 1" = 1'-0"

NOTE:

DUE TO VARIATIONS IN SELECTED PRINTER SETTINGS, NOTED SCALES MAY NO LONGER BE APPLICABLE.
GRADE LEVEL (1ST FLOOR OR ADDITIONAL STORIES)

CAST EMBEDDED STEEL ANCHOR BOLTS – APPLIES TO 6” OR 8” WALLS – SIZE & FREQUENCY PER ENGINEERING SPECIFICATIONS OR SIM. TO PRESCRIPTIVE METHOD FIGURE 6.1 & 6.5 CONTAINED IN THE H.U.D. P.A.T.H. DOCUMENTATION. A LINK IS PROVIDED IN THE TECHNICAL SECTION OF OUR WEBSITE UNDER CODE COMPLIANCE.

FLOOR SYSTEM PER CONSTRUCTION DRAWINGS

DOWELS SUPPORTING UPPER VERTICAL REINFORCEMENT (40 BAR Dia. OVERLAP REQUIRED – 50% ATTACHMENT TO UPPER & LOWER REBAR)

NOTES:
1. VARIATIONS IN IMPOSED LIVE & DEAD LOADS AND OTHER APPLICATION SPECIFIC VARIABLES REQUIRE ALL ASPECTS OF THE DETAILS SHOWN HERE TO BE DESIGNED AND /OR APPROVED BY A QUALIFIED ENGINEER
2. ALL CONSTRUCTION SHALL BE IN ACCORDANCE W/ THE SPECIFICATION OF AND THE RESPONSIBILITY OF A QUALIFIED STRUCTURAL ENGINEER.

NOTE:
DUE TO VARIATIONS IN SELECTED PRINTER SETTINGS, NOTED SCALES MAY NO LONGER BE APPLICABLE

54 CROSS SECTION DETAIL
SCALE: 1” = 1’-0”

1 6 1/2” RESPECTIVELY FOR 6” OR 8” BLOCK

2 1/2”

#3 (10mm) DEFORMED BAR

#4 SUPPORTING BAR (15mm)

STIRRUP DETAIL SCALE: 1” = 1’-0”

STIRRUP SPACING:
1. VENEER = 1000 lb/ft (15kN/m @ 18” (450mm)
2. VENEER = 1500 lb/ft (22kN/m @ 12” (300mm)
CONSTRUCTION SHALL BE IN ACCORDANCE WITH ALL APPLICABLE LOCAL AND NATIONAL CODES. ALL DRAWINGS ARE SUBJECT TO CHANGE WITHOUT NOTICE.
CONSTRUCTION SHALL BE IN ACCORDANCE WITH ALL APPLICABLE LOCAL AND NATIONAL CODES. ALL DRAWINGS ARE SUBJECT TO CHANGE WITHOUT NOTICE.
CONSTRUCTION SHALL BE IN ACCORDANCE WITH ALL APPLICABLE LOCAL AND NATIONAL CODES. ALL DRAWINGS ARE SUBJECT TO CHANGE WITHOUT NOTICE.
BUILDING SYSTEMS

VERTICAL WALL REINFORCEMENT AS REQUIRED

INSULATING FORM

FLOOR SYSTEM PER CONSTRUCTION DRAWINGS

APPROVED JOIST HANGER

BUILDING SYSTEMS

DATE/REV 11-17-09 SCALE NTS DETAIL SHEET

NOTES

CONSTRUCTION SHALL BE IN ACCORDANCE WITH ALL APPLICABLE LOCAL AND NATIONAL CODES. ALL DRAWINGS ARE SUBJECT TO CHANGE WITHOUT NOTICE.

55C
FLOOR ICF WALL CONNECTION IN SEISMIC ZONE D & TOWNHOUSE ZONE C. FRAME ABOVE

ANCHOR BOLTS SIZE 10” 24” ON CENTER

3 INCH WOOD SOLE PLATE REQUIRED

BUILDING SYSTEMS

BUILD BLOCK TECHNICAL & INSTALLATION MANUAL PAGE 107 Revised 5/2017

©2017 ALL RIGHTS RESERVED

DATE/REV 11-17-09 SCALE NTS DETAIL SHEET

NOTES

CONSTRUCTION SHALL BE IN ACCORDANCE WITH ALL APPLICABLE LOCAL AND NATIONAL CODES. ALL DRAWINGS ARE SUBJECT TO CHANGE WITHOUT NOTICE.

55D

9705 N. BROADWAY EXTENSION, SUITE 200, OKLAHOMA CITY, OK 73114 OFFICE: 405-840-3386 | TOLL FREE: 866-222-2575 | FAX: 831-597-0792 BUILDBLOCK.COM
BUILDDECK FLOOR & WALL TOP BEARING

SECTION DETAIL

SCALE: 1” = 1'-0”

NOTE:

DUE TO VARIATIONS IN SELECTED PRINTER SETTINGS, NOTED SCALES MAY NO LONGER BE APPLICABLE

CONSTRUCTION SHALL BE IN ACCORDANCE WITH ALL APPLICABLE LOCAL AND NATIONAL CODES. ALL DRAWINGS ARE SUBJECT TO CHANGE WITHOUT NOTICE.

BUILDDECK SUPPLIED

20 ga ATTACHMENT STRIP (OPTIONAL)

#8 (FINE) DRYWALL SCREW

APPROVED THERMAL BARRIER

20 ga UTILITY ANGLE

APPROVED THERMAL BARRIER

#8 (FINE) DRYWALL SCREW

NOTE:

BUILDDECK FORMS ARE AVAILABLE IN 8, 10 AND 12 INCH HEIGHTS TO ACCOMODATE VARYING SPANS AND LOADS.

2.5”–4” CONCRETE CAP PER ENGINEERING

ENGINEER SPEC. STEEL

MIN. 3/4” CONCRETE COVERAGE

12” BUILDDECK FORM

MIN. 40 X DIA. REBAR LAP SPlice (EX. 20” FOR #4 STEEL)

DATE/REV 11-19-09

SCALE

NOS

DETAIL SHEET

56
NOTE: ALL DESIGN MUST BE APPROVED BY THE PROJECT SPECIFIC ENGINEER OF RECORD

SEE BB-DTL 14 FOR EXTERIOR FINISH REQUIREMENTS

MIN. 40 X DIA. REBAR LAP SPLICE (EX. 20" FOR #4 STEEL)

12" BUILDECK FORM

ENGINEER SPEC. STEEL MIN. 3/4" CONCRETE COVERAGE

2.5"-4" CONCRETE CAP PER ENGINEERING

BUILDECK FORMS ARE AVAILABLE IN 8, 10 AND 12 INCH HEIGHTS TO ACCOMMODATE VARYING SPANS AND LOADS.

BOTTOM BEAM ENGINEER SPEC. STEEL

3.75" #8 (FINE) DRYWALL SCREW (OPTIONAL)

BUILDBLOCK SUPPLIED 20 ga ATTACHMENT STRIP (OPTIONAL)

#8 (FINE) DRYWALL SCREW

APPROVED THERMAL BARRIER

USAGE OF 8 GA UTILITY ANGLE

SCALE: 1" = 1'-0"

CONSTRUCTION SHALL BE IN ACCORDANCE WITH ALL APPLICABLE LOCAL AND NATIONAL CODES. ALL DRAWINGS ARE SUBJECT TO CHANGE WITHOUT NOTICE.
SECTION DETAIL A-A
SCALE: 1" = 1'-0"

NOTE:
ENSURE THAT ALL REBAR STIRRUPS ARE ADEQUATELY MARKED PRIOR TO POUR. THIS WILL ELIMINATE INTERFERENCE WITH TAPCON/TITEN SCREWS.

SST A34
SST A35

NOTES:
1. USE OF EITHER 2X4 OR 2X6 (PICTURED) PRESSURE TREATED LUMBER IS ACCEPTABLE. INFERIOR FINISH AT CEILING JOINT MAY BE DRYWALL OR WOOD TRIM TO CONCEAL LEDGER BOARD.
2. SCREWS OR JOIST NAILS MAY BE USED FOR ATTACHING JOIST ANGLE BRACKET TO LEDGER PLATE. SEE HANGER MANUFACTURERS RECOMMENDATIONS FOR FASTENERS.

NOTE:
DUE TO VARIATIONS IN SELECTED PRINTER SETTINGS, NOTED SCALES MAY NO LONGER BE APPLICABLE.
NOTE:
ENSURE THAT ALL REBAR STIRRUPS ARE ADEQUATELY MARKED PRIOR TO POUR. THIS WILL ELIMINATE INTERFERENCE WITH TAPCON/TITEN SCREWS.

<table>
<thead>
<tr>
<th>ALLOWABLE LIVE LOAD TABLE FOR LEDGER BLOCK</th>
</tr>
</thead>
<tbody>
<tr>
<td>WITH WOOD FLOOR SYSTEM DEAD LOAD</td>
</tr>
<tr>
<td>TOTAL SERVICE LOAD = 1.20 kips/ft. of ICF WALL</td>
</tr>
<tr>
<td>DEAD LOAD = 25 psf (WOOD FLOOR SYSTEM)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FLOOR SPAN (feet)</th>
<th>ALLOWABLE LIVE LOAD (psf)</th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td>108</td>
</tr>
<tr>
<td>20</td>
<td>95</td>
</tr>
<tr>
<td>22</td>
<td>84</td>
</tr>
<tr>
<td>24</td>
<td>75</td>
</tr>
<tr>
<td>26</td>
<td>67</td>
</tr>
<tr>
<td>28</td>
<td>61</td>
</tr>
<tr>
<td>30</td>
<td>55</td>
</tr>
<tr>
<td>32</td>
<td>50</td>
</tr>
<tr>
<td>34</td>
<td>46</td>
</tr>
<tr>
<td>36</td>
<td>42</td>
</tr>
<tr>
<td>38</td>
<td>38</td>
</tr>
</tbody>
</table>

NOTES:
1. USE OF EITHER 2X4 OR 2X6 (PICTURED) PRESSURE TREATED LUMBER IS ACCEPTABLE. INFERIOR FINISH AT CEILING JOINT MAY BE DRYWALL OR WOOD TRIM TO CONCEAL LEDGER BOARD.
2. SCREWS OR JOIST NAILS MAY BE USED FOR ATTACHING JOIST ANGLE BRACKET TO LEDGER PLATE. SEE HANGER MANUFACTURERS RECOMMENDATIONS FOR FASTENERS.

NOTE:
DUE TO VARIATIONS IN SELECTED PRINTER SETTINGS, NOTED SCALES MAY NO LONGER BE APPLICABLE.
NOTES:**

1. USE OF EITHER 2X4 OR 2X6 (PICTURED) PRESSURE TREATED LUMBER IS ACCEPTABLE. INFERIOR FINISH AT CEILING JOINT MAY BE DRYWALL OR WOOD TRIM TO CONCEAL LEDGER BOARD.

2. SCREWS OR JOIST NAILS MAY BE USED FOR ATTACHING JOIST ANGLE BRACKET TO LEDGER PLATE. SEE HANGER MANUFACTURERS RECOMMENDATIONS FOR FASTENERS.

NOTE:

DUE TO VARIATIONS IN SELECTED PRINTER SETTINGS, NOTED SCALES MAY NO LONGER BE APPLICABLE.
CORNER REINFORCEMENT
ZIP-TIE THE INTERLOCKING NUBS TOGETHER TO REINFORCE THE CORNER. BOND THE CUT EDGES TOGETHER WITH FOAM FOAM OR SIMILAR LOW EXPANDING FOAM ADHESIVE.

ADEQUATE BRACING AND STRAPPING IS REQUIRED FOR ALL FIELD FABRICATED CORNERS. LARGER BLOCK CORES REQUIRE ADDITIONAL BRACING AND STRAPPING ON OUTSIDE CORNER CUTS. CONTACT BUILDBLOCK TECHNICAL SUPPORT FOR MORE INFORMATION.

HOW TO FIELD FABRICATE A CORNER
1. MARK THE DIMENSIONS SHOWN BELOW ON THE BLOCK.
2. USING A STRAIGHT EDGE, DRAW A LINE ACROSS THE FORM TO SERVE AS A GUIDELINE.
3. USE A HOT KNIFE OR HAND SAW TO CUT THE FORM.
4. FLIP ONE OF THE HALVES AND ALIGN TO THE CUT EDGES TO MAKE THE MITERED CORNER.
5. FOAM GLUE THE EDGES, ZIP-TIE THE INTERLOCKING NUBS, AND ADD STRAPPING AND BRACING AS REQUIRED.

NOTE:
FIELD CUT CORNERS CAN BE EASILY MADE USING THESE DIMENSIONS. THE CUTS ARE DESIGNED TO ALLOW A SUFFICIENT RUNNING BOND FOR THE FORMS.

THESE DIMENSIONS DO NOT MATCH FACTORY CORNERS. CUTS SHOULD BE MADE WITH THE MOST ACCURATE SAW AVAILABLE. FIELD MITERS SHOULD BE REINFORCED WITH WOOD OR METAL STRAPPING AND BRACED ADEQUATELY. SEE THE BUILDBLOCK INSTALLATION & TECHNICAL MANUAL FOR MORE DETAIL ON STRAPING AND BRACING.
CORNER REINFORCEMENT

ZIP-TIE THE INTERLOCKING NUBS TOGETHER TO REINFORCE THE CORNER. BOND THE CUT EDGES TOGETHER WITH FOAM/FOAM OR SIMILAR LOW EXPANDING FOAM ADHESIVE.

ADEQUATE BRACING AND STRAPPING IS REQUIRED FOR ALL FIELD FABRICATED CORNERS. LARGER BLOCK CORES REQUIRE ADDITIONAL BRACING AND STRAPPING ON OUTSIDE CORNER CUTS. CONTACT BUILDBLOCK TECHNICAL SUPPORT FOR MORE INFORMATION.

HOW TO FIELD FABRICATE A CORNER

1. MARK THE DIMENSIONS SHOWN BELOW ON THE BLOCK.
2. USING A STRAIGHT EDGE, DRAW A LINE ACROSS THE FORM TO SERVE AS A GUIDELINE.
3. USE A HOT KNIFE OR HAND SAW TO CUT THE FORM.
4. FLIP ONE OF THE HALVES AND ALIGN TO THE CUT EDGES TO MAKE THE MITERED CORNER.
5. FOAM GLUE THE EDGES, ZIP-TIE THE INTERLOCKING NUBS, AND ADD STRAPPING AND BRACING AS REQUIRED.

NOTE:

FIELD CUT CORNERS CAN BE EASILY MADE USING THESE DIMENSIONS. THE CUTS ARE DESIGNED TO ALLOW A SUFFICIENT RUNNING BOND FOR THE FORMS.

THESE DIMENSIONS DO NOT MATCH FACTORY CORNERS. CUTS SHOULD BE MADE WITH THE MOST ACCURATE SAW AVAILABLE. FIELD MITERS SHOULD BE REINFORCED WITH WOOD OR METAL STRAPPING AND BRACED ADEQUATELY. SEE THE BUILDBLOCK INSTALLATION & TECHNICAL MANUAL FOR MORE DETAIL ON STRAPPING AND BRACING.
CORNER REINFORCEMENT

ZIP-TIE THE INTERLOCKING NUBS TOGETHER TO REINFORCE THE CORNER. BOND THE CUT EDGES TOGETHER WITH FOAM2FOAM OR SIMILAR LOW EXPANDING FOAM ADHESIVE.

ADEQUATE BRACING AND STRAPPING IS REQUIRED FOR ALL FIELD FABRICATED CORNERS. LARGER BLOCK CORES REQUIRE ADDITIONAL BRACING AND STRAPPING ON OUTSIDE CORNER CUTS. CONTACT BUILDBLOCK TECHNICAL SUPPORT FOR MORE INFORMATION.

HOW TO FIELD FABRICATE A CORNER

1. MARK THE DIMENSIONS SHOWN BELOW ON THE BLOCK.
2. USING A STRAIGHT EDGE, DRAW A LINE ACROSS THE FORM TO SERVE AS A GUIDELINE.
3. USE A HOT KNIFE OR HAND SAW TO CUT THE FORM.
4. FLIP ONE OF THE HALVES AND ALIGN TO THE CUT EDGES TO MAKE THE MITERED CORNER.
5. FOAM GLUE THE EDGES. ZIP-TIE THE INTERLOCKING NUBS, AND ADD STRAPPING AND BRACING AS REQUIRED.

NOTE:

FIELD CUT CORNERS CAN BE EASILY MADE USING THESE DIMENSIONS. THE CUTS ARE DESIGNED TO ALLOW A SUFFICIENT RUNNING BOND FOR THE FORMS.

THESE DIMENSIONS DO NOT MATCH FACTORY CORNERS. CUTS SHOULD BE MADE WITH THE MOST ACCURATE SAW AVAILABLE. FIELD MITERS SHOULD BE REINFORCED WITH WOOD OR METAL STRAPPING AND BRACED ADEQUATELY. SEE THE BUILDBLOCK INSTALLATION & TECHNICAL MANUAL FOR MORE DETAIL ON STRAPPING AND BRACING.
CORNER REINFORCEMENT

ZIP-TIE THE INTERLOCKING NUBS TOGETHER TO REINFORCE THE CORNER. BOND THE CUT EDGES TOGETHER WITH FOAM2FOAM OR SIMILAR LOW EXPANDING FOAM ADHESIVE.

ADEQUATE BRACING AND STRAPPING IS REQUIRED FOR ALL FIELD FABRICATED CORNERS. LARGER BLOCK CORES REQUIRE ADDITIONAL BRACING AND STRAPPING ON OUTSIDE CORNER CUTS. CONTACT BUILDBLOCK TECHNICAL SUPPORT FOR MORE INFORMATION.

HOW TO FIELD FABRICATE A CORNER

1. MARK THE DIMENSIONS SHOWN BELOW ON THE BLOCK.
2. USING A STRAIGHT EDGE, DRAW A LINE ACROSS THE FORM TO SERVE AS A GUIDELINE.
3. USE A HOT KNIFE OR HAND SAW TO CUT THE FORM.
4. FLIP ONE OF THE HALVES AND Align TO THE CUT EDGES TO MAKE THE MITERED CORNER.
5. FOAM GLUE THE EDGES, ZIP-TIE THE INTERLOCKING NUBS, AND ADD STRAPPING AND BRACING AS REQUIRED.

NOTE:

FIELD CUT CORNERS CAN BE EASILY MADE USING THESE DIMENSIONS. THE CUTS ARE DESIGNED TO ALLOW A SUFFICIENT RUNNING BOND FOR THE FORMS.

THESE DIMENSIONS DO NOT MATCH FACTORY CORNERS. CUTS SHOULD BE MADE WITH THE MOST ACCURATE SAW AVAILABLE. FIELD MITERS SHOULD BE REINFORCED WITH WOOD OR METAL STRAPPING AND BRACED ADEQUATELY. SEE THE BUILDBLOCK INSTALLATION & TECHNICAL MANUAL FOR MORE DETAIL ON STRAPPING AND BRACING.
BUILDING SYSTEMS

BB-800/BL-800 90° FIELD FABRICATED CORNER

CORNER REINFORCEMENT
ZIP-TIE THE INTERLOCKING NUBS TOGETHER TO REINFORCE THE CORNER. BOND THE CUT EDGES TOGETHER WITH FOAM2FOAM OR SIMILAR LOW EXPANDING FOAM ADHESIVE.

ADEQUATE BRACING AND STRAPPING IS REQUIRED FOR ALL FIELD FABRICATED CORNERS. LARGER BLOCK CORES REQUIRE ADDITIONAL BRACING AND STRAPPING ON OUTSIDE CORNER CUTS. CONTACT BUILDBLOCK TECHNICAL SUPPORT FOR MORE INFORMATION.

HOW TO FIELD FABRICATE A CORNER
1. MARK THE DIMENSIONS SHOWN BELOW ON THE BLOCK.
2. USING A STRAIGHT EDGE, DRAW A LINE ACROSS THE FORM TO SERVE AS A GUIDELINE.
3. USE A HOT KNIFE OR HAND SAW TO CUT THE FORM.
4. FLIP ONE OF THE HALVES AND ALIGN TO THE CUT EDGES TO MAKE THE MITERED CORNER.
5. FOAM GLUE THE EDGES, ZIP-TIE THE INTERLOCKING NUBS, AND ADD STRAPPING AND BRACING AS REQUIRED.

NOTE:
FIELD CUT CORNERS CAN BE EASILY MADE USING THESE DIMENSIONS. THE CUTS ARE DESIGNED TO ALLOW A SUFFICIENT RUNNING BOND FOR THE FORMS.

THESE DIMENSIONS DO NOT MATCH FACTORY CORNERS. CUTS SHOULD BE MADE WITH THE MOST ACCURATE SAW AVAILABLE. FIELD MITERS SHOULD BE REINFORCED WITH WOOD OR METAL STRAPPING AND BRACED ADEQUATELY. SEE THE BUILDBLOCK INSTALLATION & TECHNICAL MANUAL FOR MORE DETAIL ON STRAPPING AND BRACING.
CORNER REINFORCEMENT
ZIP-TIE THE INTERLOCKING NUBS TOGETHER TO REINFORCE THE CORNER. BOND THE CUT EDGES TOGETHER WITH FOAM2FOAM OR SIMILAR LOW EXPANDING FOAM ADHESIVE.

ADEQUATE BRACING AND STRAPPING IS REQUIRED FOR ALL FIELD FABRICATED CORNERS. LARGER BLOCK CORES REQUIRE ADDITIONAL BRACING AND STRAPPING ON OUTSIDE CORNER CUTS. CONTACT BUILDBLOCK TECHNICAL SUPPORT FOR MORE INFORMATION.

HOW TO FIELD FABRICATE A CORNER
1. MARK THE DIMENSIONS SHOWN BELOW ON THE BLOCK.
2. USING A STRAIGHT EDGE, DRAW A LINE ACROSS THE FORM TO SERVE AS A GUIDELINE.
3. USE A HOT KNIFE OR HAND SAW TO CUT THE FORM.
4. FLIP ONE OF THE HALVES AND ALIGN TO THE CUT EDGES TO MAKE THE MITERED CORNER.
5. FOAM GLUE THE EDGES, ZIP-TIE THE INTERLOCKING NUBS, AND ADD STRAPPING AND BRACING AS REQUIRED.

NOTE:
FIELD CUT CORNERS CAN BE EASILY MADE USING THESE DIMENSIONS. THE CUTS ARE DESIGNED TO ALLOW A SUFFICIENT RUNNING BOND FOR THE FORMS.

THESE DIMENSIONS DO NOT MATCH FACTORY CORNERS. CUTS SHOULD BE MADE WITH THE MOST ACCURATE SAW AVAILABLE. FIELD MITERS SHOULD BE REINFORCED WITH WOOD OR METAL STRAPPING AND BRACED ADEQUATELY. SEE THE BUILDBLOCK INSTALLATION & TECHNICAL MANUAL FOR MORE DETAIL ON STRAPPING AND BRACING.
CORNER REINFORCEMENT

ZIP-TIE THE INTERLOCKING NUBS TOGETHER TO REINFORCE THE CORNER. BOND THE CUT EDGES TOGETHER WITH FOAM2FOAM OR SIMILAR LOW EXPANDING FOAM ADHESIVE.

ADEQUATE BRACING AND STRAPPING IS REQUIRED FOR ALL FIELD FABRICATED CORNERS. LARGER BLOCK CORES REQUIRE ADDITIONAL BRACING AND STRAPPING ON OUTSIDE CORNER CUTS.

CONTACT BB-1000/BL-1000 90° FIELD FABRICATED CORNER.

CONSTRUCTION SHALL BE IN ACCORDANCE WITH ALL APPLICABLE LOCAL AND NATIONAL CODES. ALL DRAWINGS ARE SUBJECT TO CHANGE WITHOUT NOTICE.

HOW TO FIELD FABRICATE A CORNER

1. MARK THE DIMENSIONS SHOWN BELOW ON THE BLOCK.
2. USING A STRAIGHT EDGE, DRAW A LINE ACROSS THE FORM TO SERVE AS A GUIDELINE.
3. USE A HOT KNIFE OR HAND SAW TO CUT THE FORM.
4. FLIP ONE OF THE HALVES AND ALIGN TO THE CUT EDGES TO MAKE THE MITERED CORNER.
5. FOAM GLUE THE EDGES. ZIP-TIE THE INTERLOCKING NUBS, AND ADD STRAPPING AND BRACING AS REQUIRED.

NOTE:

FIELD CUT CORNERS CAN BE EASILY MADE USING THESE DIMENSIONS. THE CUTS ARE DESIGNED TO ALLOW A SUFFICIENT RUNNING BOND FOR THE FORMS.

THESE DIMENSIONS DO NOT MATCH FACTORY CORNERS. CUTS SHOULD BE MADE WITH THE MOST ACCURATE SAW AVAILABLE. FIELD MITERS SHOULD BE REINFORCED WITH WOOD OR METAL STRAPPING AND BRACED ADEQUATELY.

SEE THE BUILDBLOCK INSTALLATION & TECHNICAL MANUAL FOR MORE DETAIL ON STRAPPING AND BRACING.
CORNER REINFORCEMENT
ZIP-TIE THE INTERLOCKING NUBS TOGETHER TO REINFORCE THE CORNER. BOND THE CUT EDGES TOGETHER WITH FOAM or SIMILAR LOW EXPANDING FOAM ADHESIVE.
ADEQUATE BRACING AND STRAPPING IS REQUIRED FOR ALL FIELD FABRICATED CORNERS. LARGER BLOCK CORES REQUIRE ADDITIONAL BRACING AND STRAPPING ON OUTSIDE CORNER CUTS. CONTACT BUILDBLOCK TECHNICAL SUPPORT FOR MORE INFORMATION.

HOW TO FIELD FABRICATE A CORNER
1. MARK THE DIMENSIONS SHOWN BELOW ON THE BLOCK.
2. USING A STRAIGHT EDGE, DRAW A LINE ACROSS THE FORM TO SERVE AS A GUIDELINE.
3. USE A HOT KNIFE OR HAND SAW TO CUT THE FORM.
4. FLIP ONE OF THE HALVES AND ALIGN TO THE CUT EDGES TO MAKE THE MITERED CORNER.
5. FOAM GLUE THE EDGES, ZIP-TIE THE INTERLOCKING NUBS, AND ADD STRAPPING AND BRACING AS REQUIRED.

NOTE:
FIELD CUT CORNERS CAN BE EASILY MADE USING THESE DIMENSIONS. THE CUTS ARE DESIGNED TO ALLOW A SUFFICIENT RUNNING BOND FOR THE FORMS.

THESE DIMENSIONS DO NOT MATCH FACTORY CORNERS. CUTS SHOULD BE MADE WITH THE MOST ACCURATE SAW AVAILABLE. FIELD MITERS SHOULD BE REINFORCED WITH WOOD OR METAL STRAPPING AND BRACED ADEQUATELY. SEE THE BUILDBLOCK INSTALLATION & TECHNICAL MANUAL FOR MORE DETAIL ON STRAPPING AND BRACING.
CORNER REINFORCEMENT
ZIP-TIE THE INTERLOCKING NUBS TOGETHER TO REINFORCE THE CORNER. BOND THE CUT EDGES TOGETHER WITH FOAM2FOAM OR SIMILAR LOW EXPANDING FOAM ADHESIVE.

ADEQUATE BRACING AND STRAPPING IS REQUIRED FOR ALL FIELD FABRICATED CORNERS. LARGER BLOCK CORES REQUIRE ADDITIONAL BRACING AND STRAPPING ON OUTSIDE CORNER CUTS. CONTACT BUILDBLOCK TECHNICAL SUPPORT FOR MORE INFORMATION.

HOW TO FIELD FABRICATE A CORNER
1. MARK THE DIMENSIONS SHOWN BELOW ON THE BLOCK.
2. USING A STRAIGHT EDGE, DRAW A LINE ACROSS THE FORM TO SERVE AS A GUIDELINE.
3. USE A HOT KNIFE OR HAND SAW TO CUT THE FORM.
4. FLIP ONE OF THE HALVES AND ALIGN TO THE CUT EDGES TO MAKE THE MITERED CORNER.
5. FOAM GLUE THE EDGES. ZIP-TIE THE INTERLOCKING NUBS, AND ADD STRAPPING AND BRACING AS REQUIRED.

NOTE:
FIELD CUT CORNERS CAN BE EASILY MADE USING THESE DIMENSIONS. THE CUTS ARE DESIGNED TO ALLOW A SUFFICIENT RUNNING BOND FOR THE FORMS.

THESE DIMENSIONS DO NOT MATCH FACTORY CORNERS. CUTS SHOULD BE MADE WITH THE MOST ACCURATE SAW AVAILABLE. FIELD MITERS SHOULD BE REINFORCED WITH WOOD OR METAL STRAPPING AND BRACED ADEQUATELY. SEE THE BUILDBLOCK INSTALLATION & TECHNICAL MANUAL FOR MORE DETAIL ON STRAPPING AND BRACING.
CORNER REINFORCEMENT

ZIP-TIE THE INTERLOCKING NUBS TOGETHER TO REINFORCE THE CORNER. BOND THE CUT EDGES TOGETHER WITH FOAM2FOAM OR SIMILAR LOW EXPANDING FOAM ADHESIVE.

ADEQUATE BRACING AND STRAPPING IS REQUIRED FOR ALL FIELD FABRICATED CORNERS. LARGER BLOCK CORES REQUIRE ADDITIONAL BRACING AND STRAPPING ON OUTSIDE CORNER CUTS. CONTACT BUILDBLOCK TECHNICAL SUPPORT FOR MORE INFORMATION.

HOW TO FIELD FABRICATE A CORNER

1. MARK THE DIMENSIONS SHOWN BELOW ON THE BLOCK.
2. USING A STRAIGHT EDGE, DRAW A LINE ACROSS THE FORM TO SERVE AS A GUIDELINE.
3. USE A HOT KNIFE OR HAND SAW TO CUT THE FORM.
4. FLIP ONE OF THE HALVES AND ALIGN TO THE CUT EDGES TO MAKE THE MITERED CORNER.
5. FOAM GLUE THE EDGES. ZIP-TIE THE INTERLOCKING NUBS, AND ADD STRAPPING AND BRACING AS REQUIRED.

NOTE:
FIELD CUT CORNERS CAN BE EASILY MADE USING THESE DIMENSIONS. THE CUTS ARE DESIGNED TO ALLOW A SUFFICIENT RUNNING BOND FOR THE FORMS.

THESE DIMENSIONS DO NOT MATCH FACTORY CORNERS. CUTS SHOULD BE MADE WITH THE MOST ACCURATE SAW AVAILABLE. FIELD MITERS SHOULD BE REINFORCED WITH WOOD OR METAL STRAPPING AND BRACED ADEQUATELY. SEE THE BUILDBLOCK INSTALLATION & TECHNICAL MANUAL FOR MORE DETAIL ON STRAPPING AND BRACING.
NOTE:
FORM IS REVERSIBLE, BOTH HORIZONTALLY AND VERTICALLY.
BLOCKS STACK @ 1'-4" (16") INCREMENTS.

LEGEND:
= POSITIVE PROFILES (TONGUES)
= NEGATIVE PROFILES (GROOVES)
BUILDING SYSTEMS

GLOBALBLOCK ALL FOAM ICF 3" 90° CORNER BLOCK

DATE/REV 9/2015 SCALE NTS DETAIL SHEET

CONSTRUCTION SHALL BE IN ACCORDANCE WITH ALL APPLICABLE LOCAL AND NATIONAL CODES. ALL DRAWINGS ARE SUBJECT TO CHANGE WITHOUT NOTICE.

NOTES

WEB INSERT SLOT
REBAR SADDLE SLOT
REBAR PIN SHELF

VERTICAL REINFORCED CONCRETE POST

1/2" TYPICAL

TOP / BOTTOM VIEW (REVERSIBLE)
SCALE: NTS

NOTE:
FORM IS REVERSIBLE, BOTH HORIZONTALLY AND VERTICALLY.
BLOCKS STACK @ 1'-4" (16") INCREMENTS.

LEGEND:
□ = POSITIVE PROFILES (TONGUES)
□ = NEGATIVE PROFILES (GROOVES)

FRONT VIEW
SCALE: NTS

WEB INSERT LOCATION IF USED
1. Top / Bottom View (Reversible)
 Scale: NTS

2. Front View
 Scale: NTS

3. Side View
 Scale: NTS

NOTE:
Form is reversible, both horizontally and vertically.
Blocks stack @ 1'-4" (16") increments.

LEGEND:
= Positive profiles (tongues)
= Negative profiles (grooves)

GLOBALBLOCK ALL FOAM ICF 4" STRAIGHT BLOCK
DATE/REV 9/2015
SCALE NTS DETAIL SHEET

CONSTRUCTION SHALL BE IN ACCORDANCE WITH ALL APPLICABLE LOCAL AND NATIONAL CODES. ALL DRAWINGS ARE SUBJECT TO CHANGE WITHOUT NOTICE.
Top / Bottom View (Reversible)
Scale: NTS

NOTE:
FORM IS REVERSIBLE, BOTH HORIZONTALLY
AND VERTICALLY.
BLOCKS STACK @ 1' - 4" (16") INCREMENTS.

LEGEND:
■ = Positive Profiles (Tongues)
□ = Negative Profiles (Grooves)

Dovetail Detail
Scale: NTS
1. Top / Bottom View (Reversible)
 Scale: NTS

2. Front View
 Scale: NTS

3. Side View
 Scale: NTS

4. Dovetail Detail
 Scale: NTS

Note:
Form is reversible, both horizontally and vertically.
Blocks stack at 1'-4" (16") increments.

Legend:
□ = Positive Profiles (tongues)
☐ = Negative Profiles (grooves)
1. Top / Bottom View (Reversible)
 Scale: NTS

 NOTE:
 Form is reversible, both horizontally and vertically.
 Blocks stack @ 1'-4" (16") increments.

 LEGEND:
 = Positive profiles (tongues)
 = Negative profiles (grooves)

2. Front View
 Scale: NTS
1. **Top / Bottom View (Reversible)**
 - Scale: NTS

2. **Front View**
 - Scale: NTS

Note:
- Form is reversible, both horizontally and vertically.
- Blocks stack at 1'-4" (16") increments.

Legend:
- □ = Positive profiles (tongues)
- □ = Negative profiles (grooves)

GLOBALBLOCK ALL FOAM ICF 8" STRAIGHT BLOCK

- **DATE/REV:** 9/2015
- **SCALE:** NTS
- **DETAIL SHEET:** 60G

Construction shall be in accordance with all applicable local and national codes. All drawings are subject to change without notice.
1. Top / Bottom View (Reversible)
 Scale: NTS

 NOTE:
 FORM IS REVERSIBLE, BOTH HORIZONTALLY
 AND VERTICALLY.
 BLOCKS STACK @ 1"-4" (16") INCREMENTS.

2. Front View
 Scale: NTS

 LEGEND:
 □ = Positive Profiles (tongues)
 □ = Negative Profiles (grooves)

GLOBAIBLOCK ALL FOAM ICF 8" 90° CORNER BLOCK

DATE/REV 9/2015

CONSTRUCTION SHALL BE IN ACCORDANCE WITH ALL APPLICABLE
LOCAL AND NATIONAL CODES. ALL DRAWINGS ARE SUBJECT TO
CHANGE WITHOUT NOTICE.

BUILD BLOCK ALL FOAM ICF 8" 90° CORNER BLOCK

DATE/REV 9/2015

CONSTRUCTION SHALL BE IN ACCORDANCE WITH ALL APPLICABLE
LOCAL AND NATIONAL CODES. ALL DRAWINGS ARE SUBJECT TO
CHANGE WITHOUT NOTICE.
GLOBALBlock Web Inserts

1. **GBW-300**
 Scale: NTS

2. **GBW-400**
 Scale: NTS

3. **GBW-600**
 Scale: NTS

4. **GBW-800**
 Scale: NTS

GLOBALBlock Starter Inserts

5. **GBW-300S**
 Scale: NTS

6. **GBW-400S**
 Scale: NTS

7. **GBW-600S**
 Scale: NTS

8. **GBW-800S**
 Scale: NTS

GLOBALBlock Web Inserts Detail

<table>
<thead>
<tr>
<th>Date/Rev</th>
<th>Scale</th>
<th>NTS</th>
<th>Detail Sheet</th>
</tr>
</thead>
<tbody>
<tr>
<td>9/2015</td>
<td></td>
<td></td>
<td>601</td>
</tr>
</tbody>
</table>

Notes:

Construction shall be in accordance with all applicable local and national codes. All drawings are subject to change without notice.
GLOBALBlock REBAR SADDLES

- **Slot to hold up to (2) #4 bars**
 - GB-300RS
 - Scale: NTS

- **Slot to hold up to (2) #5 bars**
 - GBW-400RS
 - Scale: NTS

- **Slot to hold up to (2) #6 bars**
 - GBW-600RS
 - Scale: NTS

- **Slot to hold up to (2) #7 bars**
 - GBW-800RS
 - Scale: NTS

GLOBALBlock REBAR SADDLE DETAIL

- **Date/Rev**: 9/2015
- **Scale**: NTS
- **Detail Sheet**: 60J

Notes: Construction shall be in accordance with all applicable local and national codes. All drawings are subject to change without notice.
Rebar pins are required for the top course to ensure adequate concrete cover for top horizontal reinforcement. Wire ties are required on this course to maintain placement of horizontal and vertical reinforcement.
WEB INSERTS PROVIDE REBAR SUPPORT AND WALL FINISH ATTACHMENT POINTS FOR GLOBALBLOCK ICF WALLS.
WEB INSERTS ARE PLACED INTO THE MOLDED SLOTS DURING STACKING. ALTERNATE REBAR POSITIONS EACH COURSE TO CREATE A CHASE FOR VERTICAL STEEL REINFORCEMENT, PLACED AFTER STACKING, PER ENGINEERING GUIDELINES.

OPTIONAL:
WHEN NOT USING WEB INSERTS AS ATTACHMENT POINTS, IT IS PERMISSIBLE TO USE ONLY 2 INSERTS PER FORM FOR STEEL REINFORCEMENT.
IT IS RECOMMENDED TO SPACE EVENLY, EVERY OTHER SLOT.

STARTER WEBS ARE PLACED IN THE BOTTOM FORM PRIOR TO STACKING. ENSURE THE CENTER PORTION IS FACING UP.
REBAR PINS ARE REQUIRED FOR THE TOP COURSE TO ENSURE ADEQUATE CONCRETE COVER FOR TOP HORIZONTAL REINFORCEMENT. WIRE TIES ARE REQUIRED ON THIS COURSE TO MAINTAIN PLACEMENT OF HORIZONTAL AND VERTICAL REINFORCEMENT.
Rebar pins are the simplest means of supporting horizontal rebar in GlobalBlock ICFs. #3 or #4 pins are cut to length (1/4" less than nominal form width) and placed into the molded slots. The horizontal bars are then placed directly onto the pins. Wire ties are required to maintain placement of horizontal and vertical reinforcement.

Rebar pins are required for the top course to ensure adequate concrete cover for top horizontal reinforcement. Wire ties are required on this course to maintain placement of horizontal and vertical reinforcement.
GlobalBlock Rebar Saddles provide a simple means of supporting rebar, without ties, near the center of the beam, while also permitting the bars to be offset stacked to create a chase for vertical steel. Use saddles when finishing the wall with Buildcrete stucco or plaster, or where mechanical attachment is not required for the finish.

Place the saddles into the molded slots above each foam web. The 3/4" leg on the saddle will fit into the hole at the end of the slot, on either side of the form. Alternating the placement from course to course will create a chase for vertical post reinforcement.

Rebar pins are required for the top course to ensure adequate concrete cover for top horizontal reinforcement. Wire ties are required on this course to maintain placement of horizontal and vertical reinforcement.
CONSTRUCTION SHALL BE IN ACCORDANCE WITH ALL APPLICABLE LOCAL AND NATIONAL CODES. ALL DRAWINGS ARE SUBJECT TO CHANGE WITHOUT NOTICE.
FACE ATTACHMENT POINTS - APPROX. 6" O.C.

CUT-OUT MARKERS FOR CONCRETE INSPECTION PORTS ON BOTTOM BUCK SILL.

FLASHING SEAL PREVENTS WATER FROM TRAVELING BEHIND FLASHING.

FACTORY ENDS SEAL AIR AT CORNERS *USE FOAM ADHESIVE FOR ADDITIONAL PROTECTION.

MOLDED TAPE MEASURE AND CUT LINES.

SIDE ATTACHMENT POINTS - FULL LENGTH BETWEEN SIDE LINES, EACH SIDE.

OPTIONAL WIRE TIE HOLES IN TEE FOR USE WITH REBAR, OR TO TIE BUCK TO ICF WEBS FOR ADDITIONAL STRENGTH.

ICF INSERT RAIL ALIGNS BUCK WITH ICF FORM AND SEALS AND PREVENTS AIR AND WATER FROM PASSING AROUND BUCK. USE FOAM OR CAULK FOR ADDITIONAL SEALING.

CONSTRUCTION SHALL BE IN ACCORDANCE WITH ALL APPLICABLE LOCAL AND NATIONAL CODES. ALL DRAWINGS ARE SUBJECT TO CHANGE WITHOUT NOTICE.
BK-600 6-INCH BUILDBUCK

BK-800 8-INCH BUILDBUCK
THE DIMENSIONS REPRESENTED BELOW CREATE A FACTORY CONNECTION BETWEEN BUILDBUCK PIECES. WHEN CUTTING BUILDBUCK, IT IS RECOMMENDED TO RE-CUT THE BUILDBUCK PIECES TO RECREATE THE CORRECT FACTORY END AS NEEDED.

BUILDBUCK CORNER OVERLAP WITH FACTORY EDGE.

A: WHEN BLOCK IS CUT TO MOLDED VERTICAL CUT LINES, BUILDBUCK WILL CLEAR THE CROSS TIE OF THE WEB. WHEN BLOCK IS CUT THROUGH A WEB VERTICALLY, TRIMMING OF BUILDBUCK MAY BE NECESSARY AS THE BUILDBUCK ALIGNMENT RAILS MAY TOUCH THE WEB FACE.

TOP VIEW BUILDBUCK INSTALLED
MAX OPENING WITH NO SPLICES 48 INCH BY 48 INCH.

BUCK OPENING SHOULD BE WINDOW OR DOOR ROUGH OPENING PLUS 4 INCHES OUTSIDE TO OUTSIDE.

BUILDBLOCK RECOMMENDS INSTALLING AN INNER FRAME WITH CROSS-BRACES FOR SHORING DURING CONCRETE POUR. VERTICAL BRACING SHOULD REMAIN IN PLACE 7-14 DAYS. IF LOADING LINTELS DURING FRAMING IT IS RECOMMENDED TO LEAVE VERTICAL BRACING IN PLACE AS LONG AS POSSIBLE.

OPENINGS WIDER OR TALLER THAN 4FT ARE BUCKED BY JOINING THE BUCK MALE END TO FEMALE END USING THE FACTORY EDGES.

CUT BUCKS SHOULD BE TRIMMED TO MAKE A NEW FACTORY EDGE.

CORNERS MAY BE JOINED WITH A SIMPLE BUTT JOINT, A FACTORY JOINT OR CUT TO MAKE A FACTORY JOINT.

BUCK JOINTS MAY BE BONDED WITH SPRAY FOAM ADHESIVE ON THE JOINING FACES ONLY. USE A MINIMAL AMOUNT. THIS WILL SEAL AGAINST WATER AND AIR INFILTRATION.

CORNERS AND OUTER EDGES SHOULD BE FLASHED WITH AN ICF COMPATIBLE FLASHING. TAMKO TW FLASH-N-WRAP OR SIMILAR FLASHING MATERIAL ARE RECOMMENDED. ALTERNATIVELY ALUMINUM HVAC TAPE BONDS TIGHTLY, SEALING ALL JOINTS, AND MAY ALSO BE USED WITH BUILDBUCK.

DO NOT USE PETROLEUM BASED CAULKING, SEALANT, OR ADHESIVE.
BUILDBUCK BRACING RECOMMENDATIONS

1. Top and side rails - 2x6 lumber.
2. Bottom rails and cross braces - 2x4 or 2x6 lumber.
3. Bottom cross ties should be 2x4 lumber on sides and 2x6 lumber in center.
4. Top rail should be cut full rough opening width.
5. Bottom rails should be cut full R/O width.
6. Bottom cross ties should be cut full buck depth.
7. Side rails should be cut to rough opening less top, bottom and bottom cross tie dimension.
8. All rails and cross ties should be screwed in the pattern shown. It is important to screw the bottom cross ties and the side rails to the bottom rails to prevent the buck from shifting during the pour.
9. Cross braces should be 2x4 or larger, and may be turned so that they bypass at the center. They should be screwed together at the center and toenailed on each end.
10. Follow standard practices for removal of bracing based on loads applied and design strength of concrete.

BUILDBLOCK ICF FORMS

FOAM ALL SEAMS TO SEAL THE BUCK TO THE ICF FORMS.

2X4 CROSS BRACES

2X6 SIDE AND TOP BRACING

BUILDBUCK ICF BUCK

2X6 CROSS TIE

2X4 BOTTOM HORIZONTAL BRACES (X2)

DO NOT SET BUILDBUCK ON BUILDBLOCK INTERLOCK. REMOVE INTERLOCK PRIOR TO INSTALLING BUILDBUCK

2X4 CROSS TIES
BUILDBUCK WINDOW MOUNTING RECOMMENDATIONS

WINDOWS MAY BE INSTALLED EITHER AS A NEW CONSTRUCTION (FLANGED) WINDOW, OR A COMMERCIAL / REPLACEMENT (NON-FLANGED) WINDOW. FLANGED WINDOWS SHOULD BE INSTALLED TO THE OUTSIDE OF THE BUCK, USING THE SIDE ATTACHMENT POINT AS THE NAILER. WINDOWS WITHOUT A FLANGE SHOULD USE THE FACE ATTACHMENT POINTS, WHICH ARE MARKED BY BOUNDING BOXES ON THE FACE OF THE BUCK. USE SCREWS RECOMMENDED BY THE WINDOW MANUFACTURER, AND LONG ENOUGH TO EXTEND 1/2" INTO THE ATTACHMENT POINTS.

BUILDBUCK WINDOW MOUNTING RECOMMENDATIONS

DATE/REV 12/2015
SCALE NTS
DETAIL SHEET

CONSTRUCTION SHALL BE IN ACCORDANCE WITH ALL APPLICABLE LOCAL AND NATIONAL CODES. ALL DRAWINGS ARE SUBJECT TO CHANGE WITHOUT NOTICE.

62H
SECTION: AA DOOR LINTEL

Lintels (headers above doors and windows) should be designed in accordance with site specific engineering, Buildblock Engineering Manual, PCA-100, the prescriptive method, or other applicable codes or engineering. Horizontal lintel steel should extend 2ft past each side of an opening for both top and bottom bars. Top lintel bar is typically the top horizontal bar in the wall, and runs full length of the wall in the top course. "C" or "S" stirrups are used to support bottom bars, and should extend from top rebar to within 1" to 2" of the bottom of the lintel. Center distance of stirrups is specified in the lintel tables in the engineering source. Maintain concrete coverage over stirrups, minimum ¾" from back of buck to stirrup. 1" is recommended.

Door installation with Buildblock:
Due to the thickness of ICF wall systems, a jamb extender or additional trim will be required to fully trim the door jambs. These may be available from the manufacturer, or built onsite by contractor. Door manufacturers may have options for wider jambs when ordering doors.

All hardware screws must be sized to extend through the molded attachment points by ¼". These are located ¾" below the face of the foam. Add 1½" to the thickness of jams material for proper screw sizing.

Tapcon or red-head fasteners may be used to further reinforce the jambs, by embedding into the concrete core of the wall. For commercial applications, or heavy duty installations, the concrete inspection windows on the buck may be removed prior to pouring, allowing the concrete to fully fill to the face of the buck. This provides a more direct connection to the concrete core, and additional support for jams material. Bracing for opening should cover these holes, alleviating the need for additional forming material.

SECTION: BB TOP DOWN VIEW

BUILDBLOCK DOOR INSTALLATION DETAIL

DATE/REV 12/2015 SCALE NTS DETAIL SHEET NOTES

CONSTRUCTION SHALL BE IN ACCORDANCE WITH ALL APPLICABLE LOCAL AND NATIONAL CODES. ALL DRAWINGS ARE SUBJECT TO CHANGE WITHOUT NOTICE.
BUILDSHIELD TERMITE AND BUILDSHIELD FIRESTOP PROTECTION ARE A 2 PART SYSTEM CONSISTING OF A PVC EXTRUSION AND AN ADHESIVE STAINLESS STEEL BARRIER. THE COMBINATION OF INEDIBLE PLASTIC AND HIGH STRENGTH PUNCTURE RESISTANT STAINLESS STEEL CREATES AN IMPENETRABLE BARRIER TO TERMITE INTRUSION INTO YOUR HOME OR STRUCTURE.

BUILDSHIELD FIRESTOP PROTECTION CREATES A BARRIER BRIDGING THE EPS FOAM AT THE TOP OF A WALL AND BETWEEN FLOORS IN ICF STRUCTURES, ENSURING THAT HOT GASES FROM A FIRE DO NOT TRAVEL UP THE WALL, PREVENTING FASTER SPREAD OF THE FLAMES THROUGH THE STRUCTURE.

BUILDSHIELD TERMITE INSTALLATION

1. Stack ICF forms to the height required for placement of the BUILDSHIELD termite protection.
2. Pre-cut ICF corner forms as shown in detail 63C for use with BUILDSHIELD, to ensure the extrusion will fit completely into the corner of the form.
3. Miter cut 2 extrusions into the corner block using a miter saw, or miter table. Ensure that the wide flange is to the outside face of the block away from the concrete core.
4. Roll out the adhesive stainless steel barrier onto the top of the forms. Leave 2-1/2" of tape extending out from the edges of the corner block. Roll out plenty of stainless barrier to work with.
5. Align the creased edge lines in the stainless steel barrier with the edges of the ICF form panels. Note: Leave the wider portion of the barrier from the score lines to the outside face of block, the thinner portion of the barrier from the score lines to the inside core of the block.
6. Starting at a corner, place the mitered extrusions down over the adhesive stainless steel barrier. Working down the wall.
7. Place all extrusions prior to wrapping the adhesive stainless steel barrier around the extrusion flanges.
8. Wipe the extrusion flanges clean to prepare for adhesive. Before proceeding to the next step.
9. Using a sharp razor knife, lightly score the paper at the bottom of the extrusion, and peel it back from the stainless steel, exposing the adhesive. Do not puncture or cut stainless steel. If it is cut, place a patch over the cut, extending 2" either side of cut, and bond fully to the stainless steel.
10. Caution: Wearing protective gloves is a necessity for the next step. Serious injury will result if the stainless steel edges are very sharp and will easily cut through your hands.
11. Begin working the adhesive against the extrusion, taking special care to remove any gaps or bubbles. It helps to slide one's hands against the steel to bond the adhesive and to help bend the stainless steel barrier. Hold the extrusion down as the stainless steel is being folded under and around the flange. This is especially critical at the edges of the flanges, as the stainless steel must be formed tightly around the small radius.
12. Continue to work the stainless steel barrier onto the top of the flanges, sealing it fully in place.
13. When lapping stainless steel at corners, remove the paper backing from the stainless steel barrier on bottom to fully adhere it to the stainless steel above where the barriers overlap. Take care to ensure that all stainless steel is lapped and bonded at the corner to eliminate any gaps. Small pieces of barrier may be cut to cover any remaining gaps. Complete coverage of the barrier is essential at the corners.
14. If BUILDSHIELD is being installed with the stainless above the extrusion, ensure proper orientation of the extrusion, and place it on top of the course. Fold the stainless steel barrier at the creases to ease placement of the ICF forms, and insert into the extrusion. Place the top ICF form into the extrusion, inside the stainless steel barrier, and follow steps above for scoring the paper and adhering the stainless to the extrusion, working from the ICF to the bottom side of the flanges.
15. If BUILDSHIELD is used for a concrete floor system, ensure that the stainless steel is set so that it is fully embedded into the concrete slab. Leave at least 1/4" coverage of concrete minimum over and under the flanges.
16. Ensure that BUILDSHIELD extends to or past the exterior finish of the wall. For brick BUILDSHIELD should extend into the mortar joint between 2 courses. The holes must be grouted full on the course above and below the BUILDSHIELD installation. For stucco or EIFS, the exterior flange should be shortened to extend flush or slightly beyond the finish thickness of the finish. Siding and other finishes may benefit from the full length of the flange to ensure easy inspections for termite mud tubes.
17. Note: ICF blocks may need to be cut to a particular wall height to allow for proper placement of the BUILDSHIELD flange within the wall system.
18. Remove interlock fingers on the ICF form in the course above BUILDSHIELD that fits into the extrusion. If extrusions are used on both sides, you do not have to remove the fingers, but this will affect coursing height. In order to maintain coursing height, removal of the fingers is required. If BUILDSHIELD is placed only on one side of the form, rasp the thickness of the BUILDSHIELD extrusion from the course with the interlocks removed to keep the wall plumb.
19. Note: BUILDSHIELD may also be used under a crawl space. In order to allow inspection for mud tubes and other signs of termite activity, ensure at least 6" clear space between BUILDSHIELD and floor system for visual inspection. BUILDSHIELD recommends inspecting at least twice per year for crawlspace installations, spring and fall.

BUILDSHIELD TERMITE INSTALLATION

DATE/REV 12/2015 SCALE NTS MTS

NOTES

CONSTRUCTION SHALL BE IN ACCORDANCE WITH ALL APPLICABLE LOCAL AND NATIONAL CODES. ALL DRAWINGS ARE SUBJECT TO CHANGE WITHOUT NOTICE.
1. BEGIN ALL BUILDSHIELD INSTALLATIONS AT THE CORNERS.
2. THE CORNER FORMS IMMEDIATELY ABOVE AND BELOW THE BUILDSHIELD INSTALLATION MUST BE PREPARED PRIOR TO INSTALLING BUILDSHIELD.
3. THE INTERNAL FOAM RADIUS IN THE CORNER FORMS SHOULD BE CUT OUT TO PROVIDE ADEQUATE CLEARANCE FOR BUILDSHIELD EXTRUSIONS. THE CUTS SHOULD BE MADE 3" DEEP, AND SHOULD MAINTAIN THE PANEL THICKNESS AT 2-1/2" INTO THE CORNER.
4. MAKE ALL CUTS AWAY FROM THE STACKED FORMS, TO AVOID FILLING THE CORES WITH FOAM PIECES OR BEADS.
5. BUILDSHIELD EXTRUSIONS SHOULD HAVE A MITER CUT, MADE ON A MITER SAW OR IN A MITER BOX.
6. MITER JOINTS SHOULD HAVE STAINLESS STEEL BARRIERS OVERLAP FROM EACH DIRECTION, AND BARRIERS SHOULD BE FULLY BONDED TOGETHER, BY REMOVING THE ADHESIVE PAPER FROM THE BOTTOM BARRIER. TAKE CARE TO AVOID ANY BUBBLES OR WRINKLES. READ FULL INSTALLATION INSTRUCTIONS BEFORE BEGINNING.
7. WHEN POURING WALLS, IT IS NECESSARY TO FULLY VIBRATE THIS AREA, TO ENSURE THAT CONCRETE IS PROPERLY CONSOLIDATED AROUND THE FLANGE. ADDITIONALLY, SLIGHTLY HIGHER SLUMP CONCRETE (THINNER) MAY BE USED TO HELP ASSURE COMPLETE CONSOLIDATION AROUND THE FLANGES. DO NOT EXCEED A 6" TO 7" SLUMP.
BUILDSCREEN FIRESTOP INSTALLATION

1. Stack ICF forms to the height required for placement of the Buildscreen Firestop.
2. Pre-cut ICF corner forms as shown in detail 63C for use with Buildshield. To ensure the extrusion will fit completely into the corner of the form.
3. Miter cut 2 extrusions into the corner block using a miter saw, or miter table. Ensure that the wide flange is to the outside face of the block away from the concrete core.
4. Roll out the adhesive stainless steel barrier onto the top of the forms. Leave 2" of tape extending out from the edges of the corner block. Roll out plenty of stainless steel barrier to work with.
5. Align the creased edge lines in the steel with the edges of the ICF form panel. Note: Leave the wider portion of the barrier from the score lines to the outside face of the block. The thinner portion of the barrier from the score lines to the inside core of the block.
6. Starting at a corner, place the mitered extrusion down over the adhesive stainless steel barrier, working down the wall.
7. Place all extrusions prior to wrapping the adhesive stainless steel barrier around the extrusion flanges.
8. Wipe the extrusion flanges clean to prepare for adhesive before proceeding to next step.
9. Using a sharp razor knife, lightly score the paper at the bottom of the extrusion, and peel it back from the stainless steel. Exposing the adhesive. Do not puncture or cut stainless steel. If it is cut, place a patch over the cut, extending 2" either side of cut, and bond fully to the stainless steel.
10. Caution: Wearing protective gloves is a necessity for the next step. Serious injury will result. The stainless steel edges are very sharp and will easily cut through your hands.
11. Begin working the adhesive against the extrusion taking special care to remove any gaps or bubbles. It helps to slide one’s hands against the steel to bond the adhesive and to help bend the stainless steel barrier. Hold the extrusion down as the stainless steel is being folded under and around the flange. This is especially critical at the edges of the flanges, as the stainless steel must be formed tightly around the small radius.
12. Continue to work the stainless steel barrier onto the top of the flanges, sealing it fully in place.
13. When lapping stainless steel at corners, remove the paper backing from the stainless steel barrier on bottom to fully adhere it to the stainless steel above where the barriers overlap. Take care to ensure that all stainless steel is lapped and bonded at the corner to eliminate any gaps. Small pieces of barrier may be cut to cover any remaining gaps. Complete coverage of the barrier is essential at the corners.
14. If Buildshield is being installed with the stainless steel above the extrusion, ensure proper orientation of the extrusion, and place it on top of the course. Fold the stainless steel barrier at the creases to ease placement of the ICF forms, and insert into the extrusion. Place the top ICF form into the extrusion, inside the stainless steel barrier, and follow steps above for scoring the paper and adhering the stainless to the extrusion, working from the ICF to the bottom side of the flanges.
15. If Buildshield is used for a concrete floor system, ensure that the stainless steel is set so that it is fully embedded into the concrete slab. Leave at least 1/2" coverage of concrete minimum over and under the flanges.
16. Ensure that Buildshield extends to or past the exterior finish of the wall. For brick Buildshield should extend into the mortar joint between 2 courses. The holes must be grouted full on the course above and below the Buildshield installation. For stucco or EIFS, the exterior flange should be shortened to extend flush or slightly beyond the finished thickness of the finish siding and other finishes may benefit from the full length of the flange to ensure easy inspections for termite mud tubes.
17. Note: ICF blocks may need to be cut to a particular wall height to allow for proper placement of the Buildshield flange within the wall system.
18. Remove interlock fingers on the ICF form in the course above Buildshield that fits into the extrusion. If extrusions are used on both sides, you do not have to remove the fingers, but this will affect coursing height. In order to maintain coursing height, removal of the fingers is required. If Buildshield is placed only on one side of the form, rasp the thickness of the Buildshield extrusion from the course with the interlock removed to keep the wall plumb.
19. Mechanical attachments such as pan head screws should be placed through the stainless steel barrier into the wood or steel joists at 12" o.c. This will prevent the barrier from sagging during a fire.
1. BUILDSHIELD FIRESTOP SHOULD BE PLACED SO THAT THE FLANGES ALIGN WITH THE TOP OR BOTTOM OF A JOIST TYPE FLOOR SYSTEM.
2. BUILDSHIELD FIRESTOP SHOULD NOT BE INSTALLED SUCH THAT THE FLANGE IS CUT FLUSH WITH THE EPS, AND ALIGNING IN THE CENTER OF THE RIM JOIST.
3. THE STAINLESS STEEL BARRIER MUST HAVE NO HOLES, GAPS, BUBBLES OR WRINKLES. IF NECESSARY, CUT SMALL PIECES OF STAINLESS STEEL BARRIER TO CREATE PATCHES.
4. OVERLAP SHOULD BE 2" MINIMUM AT ALL SEAMS AND PATCHES.

THE BUILDSHIELD EXTRUSION MAY BE INSTALLED WITH THE STAINLESS STEEL BARRIER FACING EITHER UP OR DOWN. THE EXTRUSION PROVIDES THE NECESSARY BASE TO PROPERLY LOCATE THE STAINLESS STEEL BARRIER DURING ALL PHASES OF CONSTRUCTION.
BUILDSHIELD FINISH LEG MAY BE TRIMMED TO MEET CONSTRAINTS OF EACH INDIVIDUAL JOB. BUILDSHIELD SHOULD BE INSTALLED SO THAT THE FINISH LEG EMBEDS INTO A CONCRETE FLOOR. IT IS NECESSARY TO ENSURE FULL ENCAPSULATION OF THE STAINLESS STEEL BARRIER IN THE CONCRETE TO PREVENT ADHESIVE RELEASE DURING A FIRE. BUILDSHIELD IS DESIGNED TO PREVENT THE CHIMNEY EFFECT AT THE FOAM ON THE INSIDE OF THE ICF.
1. BUILDSHIELD FIRESTOP SHOULD BE PLACED SO THAT THE FLANGES ALIGN WITH THE TOP OR BOTTOM OF A JOIST TYPE FLOOR SYSTEM.
2. BUILDSHIELD FIRESTOP SHOULD NOT BE INSTALLED SUCH THAT THE FLANGE IS CUT FLUSH WITH THE EPS, AND ALIGNING IN THE CENTER OF THE RIM JOIST.
3. THE STAINLESS STEEL BARRIER MUST HAVE NO HOLES, GAPS, BUBBLES OR WRINKLES. IF NECESSARY, CUT SMALL PIECES OF STAINLESS STEEL BARRIER TO CREATE PATCHES.
4. OVERLAP SHOULD BE 2" MINIMUM AT ALL SEAMS AND PATCHES.
5. MECHANICAL ATTACHMENTS SUCH AS PAN HEAD SCREWS SHOULD BE PLACED THROUGH THE STAINLESS STEEL BARRIER INTO THE WOOD OR STEEL RIM JOISTS AT 12' O.C. THIS WILL PREVENT THE BARRIER FROM SAGGING DURING A FIRE. SEE DETAIL A.

BUILDSHIELD INSTALLATION WITH WOOD JOIST FLOOR SYSTEM:
BUILDSHIELD SHOULD BE INSTALLED TO EXTEND BELOW THE JOIST OR BE SANDWICHED BETWEEN HORIZONTAL MEMBERS WITHIN THE FLOOR SYSTEM. IT IS IMPORTANT FOR BUILDSHIELD TO BE MECHANICALLY AFFIXED TO THE RIM JOISTS, EITHER WITH SCREWS (12" O.C. MAX) OR OTHER MEANS, TO PREVENT ADHESIVE RELEASE DURING A FIRE. BUILDSHIELD IS DESIGNED TO PREVENT THE CHIMNEY EFFECT AT THE FOAM ON THE INSIDE OF THE ICF.
BUILDBLOCK HARDWALL IS A TWO PART ASSEMBLY ALLOWING CONNECTION OF PLYWOOD FORMING MATERIAL TO A BUILDBLOCK KNOCKDOWN PANEL. THIS CREATES A CONCRETE FACED WALL WITH A BUILT IN INSULATION LAYER. THIS SOLUTION IS APPROPRIATE FOR STAIRWELLS, ELEVATOR SHAFTS, BASEMENT PARKING, AND LOWER WALL SECTIONS IN MANUFACTURING AND WAREHOUSE FACILITIES WHERE IMPACT RESISTANCE, DURABILITY OR REMOVAL OF ALL FLAMMABLE MATERIAL IS DESIRED OR REQUIRED.

HARDWALL CONNECTOR ASSEMBLY:
1. SEPARATE THE WASHER CAP FROM THE HARDWALL CONNECTOR BY REMOVING THE SMALL TAB CONNECTING THE 2 PARTS.
2. PRESS THE CUP OF THE WASHER CAP ONTO THE END OF THE HARDWALL CONNECTOR FULLY.
3. TO FULLY EMBED THE CONNECTOR INTO THE WASHER IT MAY BE NECESSARY TO PRESS IT FIRMLY AGAINST A HARD SURFACE.

CONSTRUCTION SHALL BE IN ACCORDANCE WITH ALL APPLICABLE LOCAL AND NATIONAL CODES. ALL DRAWINGS ARE SUBJECT TO CHANGE WITHOUT NOTICE.
HARDWALL CONNECTOR ASSEMBLY:
1. SEPARATE THE WASHER CAP FROM THE HARDWALL CONNECTOR BY REMOVING THE SMALL TAB CONNECTING THE 2 PARTS.
2. PRESS THE CUP OF THE WASHER CAP ONTO THE END OF THE HARDWALL CONNECTOR FULLY.
3. TO FULLY EMBED THE CONNECTOR INTO THE WASHER IT MAY BE NECESSARY TO PRESS IT FIRMLY AGAINST A HARD SURFACE.
4. MAKE SURE TO ORIENT BRIDGES CORRECTLY BEFORE CONNECTING TO BUILDBLOCK PANELS.
5. ATTACH THE WEB BRIDGES TO THE BUILDBLOCK PANEL BY POSITIONING THEM OVER THE LOCKING TABS ON THE INNER FACE OF THE PANEL. A SHARP BLOW MAY BE REQUIRED TO FULLY SEAT THEM.
6. ATTACH THE HARDWALL CONNECTOR WITH THE WASHER CAP IN PLACE TO THE WEB BRIDGES, OPPOSITE THE FOAM PANEL.
8. ALTERNATE METHOD: ASSEMBLE THE HARDWALL CONNECTOR AND WASHER CAP AND ATTACH TO THE PLYWOOD PANEL WITH 1-5/8" COARSE THREAD PAN HEAD SCREWS. LOCK THE ASSEMBLED PANEL TO THE FOAM PANEL WITH THE WEB BRIDGES. WHEN USING THIS METHOD, IT IS IMPERATIVE TO AVOID BENDING OR BREAKING THE SCREWS WHILE MOVING THE PLYWOOD PANEL ONCE ASSEMBLED. IT MAY ALSO BE NECESSARY TO RE-ORIENT THE HARDWALL CONNECTOR BODY TO ALIGN WITH THE WEB BRIDGES, AS IT MAY TURN WHEN TIGHTENING THE SCREWS.

ALL PLYWOOD FOR FORMS SHOULD BE CUT 1/8" SHORT IN LENGTH TO ACCOUNT FOR THE NATURAL ICF FORM SHRINKAGE. HEIGHT MAY BE REDUCED 1/16" TO ACCOUNT FOR SHRINKAGE AND COMPRESSION. STANDARD ICF BRACING AND ALIGNMENT SHOULD BE INSTALLED ON THE WOOD SIDE. FOLLOW ALL MANUFACTURER RECOMMENDATIONS FOR INSTALLATION OF ICF BRACING.
HARDWALL TEMPLATE
A PAPER TEMPLATE IS DOWNLOADABLE FROM THE BUILDBLOCK WEBSITE AND MAY BE PRINTED TO SCALE TO CREATE A SUITABLE TEMPLATE FROM WOOD, SHEET METAL, OR OTHER DURABLE MATERIAL.

TEMPLATES SHOULD BE DRILLED WITH A 1/8" - 3/16" DRILL BIT. HOLES SHOULD BE PERPENDICULAR TO THE FACE OF THE PLYWOOD.

ALL PLYWOOD FOR FORMS SHOULD BE CUT 1/8" SHORT IN LENGTH TO ACCOUNT FOR THE NATURAL ICF FORM SHRINKAGE. HEIGHT MAY BE REDUCED 1/16" TO ACCOUNT FOR SHRINKAGE AND COMPRESSION. STANDARD ICF BRACING AND ALIGNMENT SHOULD BE INSTALLED ON THE WOOD SIDE. FOLLOW ALL MANUFACTURER RECOMMENDATIONS FOR INSTALLATION OF ICF BRACING.

IT IS HIGHLY RECOMMENDED TO PRE-DRILL ALL HOLES IN THE HARDWALL PANEL MATERIAL TO MAKE INSTALLATION UNIFORM AND ASSEMBLY ACCURATE.

A COARSE THREAD, PAN HEAD SCREW SHOULD BE USED TO ASSEMBLE THE FORMS. COUNTERSINK SCREWS SHOULD BE AVOIDED AS THEY CAN PULL THROUGH THE PLYWOOD WHEN CONCRETE PRESSURE IS APPLIED.

TO ASSEMBLE THE FORMS, ALIGN HOLES AND CONNECTORS BY STARTING THE SCREW THROUGH THE PLYWOOD. POSITION THE SCREW IN THE CENTER OF THE CAP.

DRIVE THE SCREW FULLY TO THE FACE OF THE PLYWOOD. DO NOT OVER TIGHTEN THE SCREW, OR SINK THE SCREW INTO THE FORM.
BUILDBLOCK HARDWALL FINISH OPTIONS

ONCE THE PLYWOOD IS REMOVED THE WASHER CAPS WILL BE VISIBLE IN THE FACE OF THE CONCRETE.

IF THIS IS THE DESIRED FINISH THE CAPS MAY BE LEFT IN PLACE TO INDICATE ATTACHMENT POINTS IN THE WALL. ATTACH OTHER FINISHES AS DESIRED.

TO REMOVE WASHER CAPS, USE A LARGE FLAT BLADE SCREWDRIVER TO TWIST AND PULL THE WASHER CAP OUT OF THE cavity. THE WASHER CAP IS BEVELED AND WILL RELEASE FROM THE CONCRETE. IF NECESSARY THE WASHER CAPS MAY BE REMOVED BY HAND, WITH A SMALL PICK, OR PLIERS. THE HARDWALL BODY WILL REMAIN EMBEDDED IN THE WALL.

TO FINISH THE ENTIRE WALL WITH STUCCO, PLASTER, OR OTHER FINISH, REMOVE CAPS AND FILL REMAINING cavity WITH PATCH, OR A SUITABLE CONCRETE FILLER AND TROWEL SMOOTH PRIOR TO APPLYING THE WALL FINISH ACCORDING TO MANUFACTURER SPECIFICATIONS.

WASHER CAP SPACING:
6 INCHES HORIZONTAL
8 INCHES VERTICAL

EXPOSED CONCRETE FACE
BUILDBLOCK BRIDGE

HARDWALL CONNECTOR BODY
WASHER CAP REMOVED.
READY FOR PATCH OR FILLER PRIOR TO APPLYING STUCCO, PLASTER ETC.
HOLE IS 1/2" DEEP 3/4" DIAMETER

WASHER CAP LEFT IN PLACE.
AVAILABLE ATTACHMENT POINT FOR WALL FINISH ETC.
BUILDBLOCK HARDWALL MAY BE USED AS A STANDALONE SYSTEM IN STAIRWELLS, ELEVATOR SHAFTS, BASEMENT PARKING, AND IN WAREHOUSE AND MANUFACTURING FACILITIES, OR WHERE IMPACT RESISTANCE, DURABILITY, OR REMOVAL OF ALL FLAMMABLE MATERIAL IS DESIRED OR REQUIRED. IT MAY ALSO BE USED FOR LOWER WALL SECTIONS REQUIRING THE SAME PROPERTIES, BUT ALLOWING WALLS ABOVE THEM TO BE FULL ICF WALLS TO EMPLOY THE ADVANTAGES OF GREATER INSULATION, EASIER ATTACHMENT OF FINISHES AND OTHER WALL DECOR. WHEN STACKING ICF ABOVE HARDWALL, ALIGN THE FOAM PANELS ON THE ONE SIDE, AND SUPPORT THE FOAM ON THE OTHER ON TOP OF THE CONCRETE WALL.

BUILDBLOCK THERMALSERT MAY BE USED ON THE FOAM SIDE OF A HARDWALL INSTALLATION TO INCREASE THE INSULATION VALUE.

BUILDLOCK FORM

STOP POUR AT BASE OF INTERLOCK WHEN ICF FORMS ARE INSTALLED ABOVE TO ALLOW NEXT COURSE TO INTERLOCK.

THERMALSERT (2" SHOWN)

PLYWOOD FORM BOARD

BUILDLOCK BRIDGE

HARDWALL FORM

BUILDLOCK PANEL

HARDWALL CONNECTOR

HARDWALL AS INSTALLED ICF ABOVE

HARDWALL WITH THERMALSERT

BUILDBLOCK HARDWALL ALTERNATIVE APPLICATION

DATE/REV 12/2015

SCALE NTS

DETAIL SHEET

NOTES

CONSTRUCTION SHALL BE IN ACCORDANCE WITH ALL APPLICABLE LOCAL AND NATIONAL CODES. ALL DRAWINGS ARE SUBJECT TO CHANGE WITHOUT NOTICE.
NOTES:
BUILDADIUS FORMS ARE SIZED BY THE LENGTH OF THE OUTER PANEL AT A 90° ARC. THE RADIUS AND DIAMETER OF THE FORMS ARE GIVEN IN THE ACCOMPANYING CHART. THIS FORM INTEGRATES WITH STRAIGHT FORMS AND DOES NOT REQUIRE CUTTING TO PROVIDE 12 INCH OFFSET. BLOCK COURSING IS 1'-4".

BUILDADIUS 2-FOOT ARC RADIUS PRODUCT DETAIL

<table>
<thead>
<tr>
<th>2FT BUILDADIUS FORM SPECIFICATIONS</th>
<th>IMPERIAL</th>
<th>METRIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>BLOCK ANGLE</td>
<td>90°</td>
<td>90°</td>
</tr>
<tr>
<td>OUTSIDE PANEL AREA</td>
<td>5.35 ft²</td>
<td>0.495 M²</td>
</tr>
<tr>
<td>INSIDE PANEL AREA</td>
<td>1.10 ft²</td>
<td>0.105 M²</td>
</tr>
<tr>
<td>OUTER PANEL ARC LENGTH</td>
<td>2' 7/8"</td>
<td>0.81 M</td>
</tr>
<tr>
<td>INNER PANEL ARC LENGTH</td>
<td>1' 8/16"</td>
<td>0.51 CM</td>
</tr>
<tr>
<td>OUTER RADIUS</td>
<td>1' 13/16"</td>
<td>0.38 M</td>
</tr>
<tr>
<td>INNER RADIUS</td>
<td>8-1/2"</td>
<td>21.7 CM</td>
</tr>
<tr>
<td>STRAIGHT SECTION LENGTHS</td>
<td>6" / 18"</td>
<td>15.2 CM / 45.7 CM</td>
</tr>
<tr>
<td>CONCRETE VOLUME</td>
<td>0.065 YD³</td>
<td>0.04501 M³</td>
</tr>
</tbody>
</table>

BUILDBLOCK.COM

CONSTRUCTION SHALL BE IN ACCORDANCE WITH ALL APPLICABLE LOCAL AND NATIONAL CODES. ALL DRAWINGS ARE SUBJECT TO CHANGE WITHOUT NOTICE.
NOTES:
BUILD RADIUS FORMS ARE SIZED BY THE LENGTH OF THE OUTER PANEL AT A 90° ARC. THE RADIUS AND DIAMETER OF THE FORMS ARE GIVEN IN THE ACCOMPANYING CHART.

THIS FORM INTEGRATES WITH STRAIGHT FORMS AND DOES NOT REQUIRE CUTTING TO PROVIDE 12 INCH OFFSET.

BLOCK COURSI NG IS 1'-4".

<table>
<thead>
<tr>
<th>4FT BUILD RADIUS FORM SPECIFICATIONS</th>
<th>IMPERIAL</th>
<th>METRIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>BLOCK ANGLE</td>
<td>90°</td>
<td>90°</td>
</tr>
<tr>
<td>OUTSIDE PANEL AREA</td>
<td>6.67 FT²</td>
<td>0.6193 m²</td>
</tr>
<tr>
<td>INSIDE PANEL AREA</td>
<td>4.74 FT²</td>
<td>0.4406 m²</td>
</tr>
<tr>
<td>OUTER PANEL ARC LENGTH</td>
<td>4-FT 0-IN</td>
<td>121.92 CM</td>
</tr>
<tr>
<td>INNER PANEL ARC LENGTH</td>
<td>2-FT 6-11/16-IN</td>
<td>78 CM</td>
</tr>
<tr>
<td>OUTER RADIUS</td>
<td>1-7-9/16-IN</td>
<td>77.62 CM</td>
</tr>
<tr>
<td>INNER RADIUS</td>
<td>1-7-9/16-IN</td>
<td>49.68 CM</td>
</tr>
<tr>
<td>STRAIGHT SECTION LENGTHS</td>
<td>12-IN</td>
<td>30.5-CM</td>
</tr>
<tr>
<td>CONCRETE VOLUME</td>
<td>0.105665 YD³</td>
<td>0.080771 m³</td>
</tr>
</tbody>
</table>
NOTES:
BUILD RADIUS FORMS ARE SIZED BY THE LENGTH OF THE OUTER PANEL AT A 90° ARC. THE RADIUS AND DIAMETER OF THE FORMS ARE GIVEN IN THE ACCOMPANYING CHART.
To create a running bond when integrating with a straight block wall, cut the form in half, vertically at the centerline (B) using one half of the block at each end on every other course.
Blocks stack @ 1'-4" increments.
NOTES:
BUILDADIUS FORMS ARE SIZED BY THE LENGTH OF THE OUTER PANEL AT A 90° ARC. THE RADIUS AND DIAMETER OF THE FORMS ARE GIVEN IN THE ACCOMPANYING CHART.
TO CREATE A RUNNING BOND WHEN INTEGRATING WITH A STRAIGHT BLOCK WALL, CUT THE FORM IN HALF, VERTICALLY AT THE CENTERLINE (B) USING ONE HALF OF THE BLOCK AT EACH END ON EVERY OTHER COURSE. BLOCKS STACK @ 1'-4" INCREMENTS.

I XX
SCALE: NTS

I XX
SCALE: NTS

I XX
SCALE: NTS

12FT BUILDADIUS FORM SPECIFICATIONS

<table>
<thead>
<tr>
<th>BLOCK ANGLE</th>
<th>IMPERIAL</th>
<th>METRIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>15°</td>
<td>15°</td>
<td></td>
</tr>
<tr>
<td>OUTSIDE PANEL AREA</td>
<td>2.67FT²</td>
<td>24.77M²</td>
</tr>
<tr>
<td>INSIDE PANEL AREA</td>
<td>2.35FT²</td>
<td>21.80M²</td>
</tr>
<tr>
<td>OUTER PANEL ARC LENGTH</td>
<td>2FT 0IN</td>
<td>60.96CM</td>
</tr>
<tr>
<td>INNER PANEL ARC LENGTH</td>
<td>1-FT 9-7/8-IN</td>
<td>54CM</td>
</tr>
<tr>
<td>OUTER RADIUS</td>
<td>7-FT 7-11/16-IN</td>
<td>232.85CM</td>
</tr>
<tr>
<td>INNER RADIUS</td>
<td>6-FT 8-11/16-IN</td>
<td>204.82CM</td>
</tr>
<tr>
<td>STRAIGHT SECTION LENGTHS</td>
<td>0-IN</td>
<td>0-CM</td>
</tr>
</tbody>
</table>
BUILD Block TECHNICAL & INSTALLATION MANUAL
PAGE 165
©2017 ALL RIGHTS RESERVED

BUILDBLOCK 16-FOOT ARC RADIUS PRODUCT DETAIL

DATE/REV 8/2016 SCALE NTS DETAIL SHEET

NOTES
CONSTRUCTION SHALL BE IN ACCORDANCE WITH ALL APPLICABLE LOCAL AND NATIONAL CODES. ALL DRAWINGS ARE SUBJECT TO CHANGE WITHOUT NOTICE.

BUILDBLOCK 16-FOOT ARC RADIUS FORM SPECIFICATIONS

<table>
<thead>
<tr>
<th>IMPERIAL</th>
<th>METRIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>BLOCK ANGLE</td>
<td>11.25°</td>
</tr>
<tr>
<td>OUTSIDE PANEL AREA</td>
<td>2.67 FT²</td>
</tr>
<tr>
<td>INSIDE PANEL AREA</td>
<td>2.42 FT²</td>
</tr>
<tr>
<td>OUTER PANEL ARC LENGTH</td>
<td>2 FT 0 IN</td>
</tr>
<tr>
<td>INNER PANEL ARC LENGTH</td>
<td>1 FT 9-13/16 IN</td>
</tr>
<tr>
<td>OUTER RADIUS</td>
<td>10 FT 2-1/4 IN</td>
</tr>
<tr>
<td>INNER RADIUS</td>
<td>9 FT 3-1/4 IN</td>
</tr>
<tr>
<td>STRAIGHT SECTION LENGTHS</td>
<td>8 FT</td>
</tr>
<tr>
<td>CONCRETE VOLUME</td>
<td>0.04715 YD³</td>
</tr>
</tbody>
</table>

BUILDRADIUS FORMS ARE SIZED BY THE LENGTH OF THE OUTER PANEL AT A 90° ARC. THE RADIUS AND DIAMETER OF THE FORMS ARE GIVEN IN THE ACCOMPANYING CHART.

TO CREATE A RUNNING BOND WHEN INTEGRATING WITH A STRAIGHT BLOCK WALL, CUT THE FORM IN HALF, VERTICALLY AT THE CENTERLINE (B) USING ONE HALF OF THE BLOCK AT EACH END ON EVERY OTHER COURSE. BLOCKS STACK @ 1'-4" INCREMENTS
NOTES:
BUILD RADIUS FORMS ARE SIZED BY THE LENGTH OF THE OUTER PANEL AT A 90° ARC. THE RADIUS AND DIAMETER OF THE FORMS ARE GIVEN IN THE ACCOMPANYING CHART.
TO CREATE A RUNNING BOND WHEN INTEGRATING WITH A STRAIGHT BLOCK WALL, CUT THE FORM IN HALF, VERTICALLY AT THE CENTERLINE (8) USING ONE HALF OF THE BLOCK AT EACH END ON EVERY OTHER COURSE.
BLOCKS STACK @ 1'-4" INCREMENTS.
A: BUILD_RADIUS INSTALLED
PERPENDICULAR TO STRAIGHT WALL. USING 90° CORNER FORM.

THIS JOINT MUST BE STRAPPED AT THE COMMON SEAM BETWEEN
THE BUILD_RADIUS FORM AND THE CORNER. STRAPPING SHOULD
ALSO WRAP THE CORNER, AND EXTEND ACROSS A MINIMUM OF
TWO FULL WEBS, BOTH DIRECTIONS, BRACING SHOULD BE PLACED ON BOTH SIDES OF
THE CORNER. ALTERNATING THE CORNER FORM TO PROVIDE APPROPRIATE
RUNNING BOND WILL REQUIRE CUTTING THE FORMS LONG
LEGS OFF ALTERNATING AS THE FORMS ARE STACKED.

HALF BLOCKS MUST BE INSERTED TO PROVIDE THE
RUNNING BOND FOR THE RADIUS FORMS.

B: BUILD_RADIUS FORMS, 8FT ARC AND LARGER, MUST BE
INSTALLED SO THAT THERE IS A HALF LENGTH BLOCK
EVERY OTHER COURSE. IT IS THE HALF LENGTH BLOCK
THAT PROVIDES THE NECESSARY OFFSET TO MAINTAIN
THE RUNNING BOND AROUND THE CURVE. THE RUNNING
BOND IN THE RADIUS FORM ELIMINATES STRAPPING WHERE
NOT ON A COMMON SEAM, AND PROVIDES STRONGER
FORMWORK FOR POURING.

C: BUILD_RADIUS MAY BE FIELD CUT AND
CONNECTED INTO A STRAIGHT WALL.
REMOVE 6 INCHES FROM CONVEX
Panel OF BUILD_RADIUS FORM. FIELD
CUT STRAIGHT FORM TO MATCH
ANGLE AND LOCATION OF
BUILD_RADIUS FORM.

EVEN AND ODD COURSES WILL HAVE
ALTERNATING DIMENSIONS DUE TO
RUNNING BOND OF BOTH STRAIGHT
AND RADIUS WALL. STRAIGHT FORMS
MUST BE TRIMMED TO MAINTAIN THE
REQUIRED 12 INCH OVERLAP. RADIUS
FORMS MUST USE HALF FORMS,
TRIMMED TO FIT THE INTERSECTION,
EVERY OTHER COURSE, TO MAINTAIN
THE REQUIRED 12 INCH OVERLAP AS
WELL.

STRAP AND BRACE COMMON SEAMS
AS REQUIRED. GLUE JOINTS USING
SPRAY FOAM ADHESIVE.
CURE SURFACE FOR 3 DAYS

DO NOT CUT INTO WEBS

PERIMETER OF REPAIR AREA IS
CUT BY SAW OR OTHER
METHODS APPROX. 90° ANGLE TO
SURFACE WITH MIN. 3/4" DEPTH

≤ 2"±

BASF GEL PATCH NON-SAG
CONCRETE REPAIR MORTAR
(ALTERNATE: USE SIKA QUICK VOH
IN LIEU OF BASF GEL PATCH) IN
ACCORDANCE WITH THE
MANUFACTURER’S WRITTEN
PROCEDURE

3/4" MIN.

REMOVE STYROFOAM TO EXPOSE CONCRETE Voids

HORIZONTAL REINFORCING, DO NOT CUT OR DAMAGE

VERTICAL REINFORCING, DO NOT CUT OR DAMAGE

FOR PROPER ADHESION, THE CONCRETE SUBSTRATE
MUST HAVE A FACTURED AGGREGATE PROFILE

CONCRETE WALL

SURFACE PREPARATION:

1. CLEAN SURFACE
2. MECHANICALLY REMOVE LOOSE MATERIAL
3. SATURATE SURFACES WITH CLEAN WATER (SSA)
4. APPLY SCRUB COAT OF REPAIR MORTAR
IMMEDIATELY PRIOR TO PLACEMENT OF GEL
PATCH REPAIR MORTAR

2± INCH DEEP CONCRETE VOID REPAIR

SCALE: 1 1/2" = 1’-0”
4± INCH DEEP CONCRETE VOID REPAIR

CLEAN & EXPOSE TO A WHITE METAL FINISH, PRIME WITH AN ANTI-CORROSION COATING SUCH AS SONOPREP PLUS (ALTERNATE: USE ARMatec 110 ANTI-CORROSION COATING) OR EQUAL

REMOVE STYROFOAM TO EXPOSE CONCRETE Voids

HORIZONTAL REINFORCING, DO NOT CUT OR DAMAGE

VERTICAL REINFORCING, DO NOT CUT OR DAMAGE

FOR PROPER ADHESION, THE CONCRETE SUBSTRATE MUST HAVE A FACTURED AGGREGATE PROFILE

SURFACE PREPARATION:
1. CLEAN SURFACE
2. MECHANICALLY REMOVE LOOSE MATERIAL
3. SATURATE SURFACES WITH CLEAN WATER (SSA)
4. APPLY SCRUB COAT OF REPAIR MORTAR IMMEDIATELY PRIOR TO PLACEMENT OF GEL PATCH REPAIR MORTAR

CURE SURFACE FOR 3 DAYS

DO NOT CUT INTO WEBs

PERIMETER OF REPAIR AREA IS CUT BY SAW OR OTHER METHODS APPROX. 90° ANGLE TO SURFACE WITH MIN. 3/4” DEPTH

BASF GEL PATCH NON-SAG CONCRETE REPAIR MORTAR (ALTERNATE: USE SIKA QUICK VOH) OR BASF LA40 PMAC REPAIR MORTAR AT LARGE-VOLUME (ALTERNATE: USE SIKACRETE 211 SCC PLUS IN LIEU OF LA40 PMAC) IN ACCORDANCE WITH THE MANUFACTURER’S WRITTEN PROCEDURE
6± INCH DEEP CONCRETE VOID REPAIR

1. CURE SURFACE FOR 3 DAYS
2. DO NOT CUT INTO WEBS
3. PERIMETER OF REPAIR AREA IS CUT BY SAW OR OTHER METHODS APPROX. 90° ANGLE TO SURFACE WITH MIN. 3/4" DEPTH

CLEAN & EXPOSE TO A WHITE METAL FINISH, PRIME WITH AN ANTI-CORROSION COATING SUCH AS SONOPREP PLUS (ALTERNATE: USE ARMATEC 110 ANTI-CORROSION COATING) OR EQUAL

REMOVE STYROFOAM TO EXPOSE CONCRETE VOIDS
HORIZONTAL REINFORCING, DO NOT CUT OR DAMAGE

VERTICAL REINFORCING, DO NOT CUT OR DAMAGE
FOR PROPER ADHESION, THE CONCRETE SUBSTRATE MUST HAVE A FACTURED AGGREGATE PROFILE

SURFACE PREPARATION:
1. CLEAN SURFACE
2. MECHANICALLY REMOVE LOOSE MATERIAL
3. SATURATE SURFACES WITH CLEAN WATER (SSA)
4. APPLY SCRUB COAT OF REPAIR MORTAR IMMEDIATELY PRIOR TO PLACEMENT OF GEL PATCH REPAIR MORTAR

BASF LA40 PMAC REPAIR MORTAR AT LARGE-VOLUME (ALTERNATE: USE SIKACRETE 211 SCC PLUS IN LIEU OF LA40 PMAC) IN ACCORDANCE WITH THE MANUFACTURER’S WRITTEN PROCEDURE

CONSTRUCTION SHALL BE IN ACCORDANCE WITH ALL APPLICABLE LOCAL AND NATIONAL CODES. ALL DRAWINGS ARE SUBJECT TO CHANGE WITHOUT NOTICE.

SCALE: 1 1/2" = 1'-0"

NOTES

DATE/REV 2-13-17

SCALE NTS

6± INCH DEEP CONCRETE VOID REPAIR

66C

9705 N. BROADWAY EXTENSION, SUITE 200, OKLAHOMA CITY, OK 73114
OFFICE: 405-840-3386 | TOLL FREE: 866-222-2575 | FAX: 831-597-0792
BUILDBLOCK.COM