BUILDBLOCK ${ }^{\oplus}$ BUILDING SYSTEMS U.S. ENGINEERING TABLES

HIGH WIND LOAD REINFORCEMENT REQUIREMENTS FOR 4" ICF WALLS

Reinforcement in Above Grade 4" Walls FBC 2004/ACI 318-05

	Wind Speed			
	120 mph		160 mph	
Wall Height	Vertical	Horizontal	Vertical	Horizontal
8^{\prime}	\#4 @ 24"	\#4 @ 16"	\#4 @ 18"	\#4 @ 16"
9^{\prime}	\#4 @ 24"	\#4 @ 16"	\#4 @ 12"	\#4 @ 16"
$10^{\prime 1}$	\#4 @ 24"	\#4 @ 16"	\#5 @ 12"	\#4 @ 16"
11^{\prime}	\#4 @ 24"	\#4 @ 16"	N/A	N/A
12^{\prime}	\#4 @ 18"	\#4 @ 16"	N/A	N/A

Assumptions:

120 mph at exposure category B
160 mph at exposure category C
Max clear span for floor trusses is 24^{\prime}
Max clear span for roof trusses is 40^{\prime}
Max mean roof height is 30^{\prime}
Max 2 stories
fc' $=3,000$ psi Concrete
fy $=60,000$ psi Rebar
${ }^{1}$ At 160 mph must use:
Max clear span for floor trusses is 20^{\prime}
Max clear span for roof trusses is 36^{\prime}
Max mean roof height is 25^{\prime}
${ }^{2}$ See typical opening detail and also Prescriptive Method

9701 N. Broadway Extension Oklahoma City, Oklahoma 73114 www.buildblock.com

Office:
Fax:
Toll Free: 1(866) 222-2575

High Wind Load Reinforcement Requirements for 4" ICF Walls

Dead load $=25 \mathrm{psf}$
Live floor load $=40$ psf
Live roof load $=20$ psf
No snow load
No seismic load
Wall openings 2 - \#4 all around ${ }^{2}$
*Doesn't apply to bottom steel for lintels

BUILDBLOCK ${ }^{\odot}$ BUILDING SYSTEMS U.S. ENGINEERING TABLES

HIGH WIND LOAD REINFORCEMENT REQUIREMENTS FOR 4" ICF LINTELS

Notes:

1.) When using more than 1 bar for the bottom reinforcement in a single lintel place them on top of each other, $1^{\prime \prime}$ clear spacing. (See 4" Lintel Detail)
2.) To calculate uniformly distributed load, UDL;
in a 1 story building, use: UDL $=\mathrm{S}_{\mathrm{r}}\left(\mathrm{DL}+\mathrm{L}_{\mathrm{r}}\right) / 2$
in a 2 story building, use: $U D L=\mathrm{S}_{\mathrm{r}}\left(\mathrm{DL}+\mathrm{L}_{\mathrm{r}}\right) / 2+\mathrm{S}_{\mathrm{f}}(\mathrm{DL}+\mathrm{LL}) / 2$
where Dead Load, DL $=25 \mathrm{psf}$
Live Load, LL $=40$ psf
Live Roof Load, $\mathrm{L}_{\mathrm{r}}=20 \mathrm{psf}$
Roof Truss Span, $\mathrm{S}_{\mathrm{r}}=40$ ' MAX
Floor Truss Span, $\mathrm{S}_{\mathrm{f}}=24^{\prime}$ MAX
3.) If UDL falls between two table values, use the greater value.
4.) Stirrup end distance starts at the opening face and extends along the lintel into the opening on both sides.
5.) All horizontal steel around openings shall be within 12 " of the bottom or top of the opening and must extend 24 " beyond the side of the opening. Where 24 "cannot be obtained beyond the limit of the opening, the bar shall be bent 90 degrees in order to obtain a minimum 12" embedment.
6.) All vertical steel around openings shall be within 12 " of each side of the opening and shall run the full height of the wall.
7.) Only uniformly distributed gravity loads and lateral wind loads have been considered. For lintels in walls that are 10' high located in 160 mph wind zones, and for point loads, consult a local design professional.
*For windows, distance from bottom of window to unfinished floor must be atleast 2'-8", except for windows in 12' high walls where this distance must be atleast 4'. If distances between bottom of window to unfinished floor are less than these values consult a local design professional.
8.) Lintels shall have atleast 6 " bearing on the wall, on both sides. (See 4" Lintel Detail)

High Wind Load Reinforcement Requirements for 4" ICF Lintels NOTES

TABLE NUMBER 1B-1F NOTES

BUILDBLOCK ${ }^{\ominus}$ BUILDING SYSTEMS U.S. ENGINEERING TABLES

HIGH WIND LOAD LINTEL TABLES FOR 4" ICF LINTELS

Reinforcement In 4" Thick, 8" High Concrete Lintel FBC 2004/ACI 318-05

Opening Width [ft]	Uniformly Distributed Load [lb/ft] ${ }^{\ddagger}$									
	350		850		1350		1850		2350	
	Bottom Steel	Stirrup End Dist. [in]	Bottom Steel	Stirrup End Dist. [in]	Bottom Steel	Stirrup End Dist. [in]	Bottom Steel	Stirrup End Dist. [in]	Bottom Steel	Stirrup End Dist. [in]
3	1-\#4	7	1-\#4	14	1-\#4	14	1-\#5	18	1-\#5	18
4	1-\#4	11	1-\#4	18	1-\#5	21				
6	1-\#4	25								
8	1-\#5	35								

Assumptions:

6" bearing on each side

$f^{\prime}=$	3000	psi	Concrete
$f_{y}=$	60	ksi	Rebar
$f_{y}=$	40	ksi	Stirrups
$h=8$ in			
$b=4$ in			

Reinforcement In 4" Thick, 8" High Concrete Lintel

TABLE NUMBER
1-B

BUILDBLOCK ${ }^{\ominus}$ BUILDING SYSTEMS U.S. ENGINEERING TABLES

HIGH WIND LOAD LINTEL TABLES FOR 4" ICF LINTELS

Reinforcement In 4" Thick, 16" High Concrete Lintel FBC 2004/ACI 318-05

Opening Width [ft]	Uniformly Distributed Load [lb/ft] ${ }^{\ddagger}$									
	350		850		1350		1850		2350	
	Bottom Steel	Stirrup End Dist. [in]	Bottom Steel	Stirrup End Dist. [in]	Bottom Steel	Stirrup End Dist. [in]	Bottom Steel	Stirrup End Dist. [in]	Bottom Steel	Stirrup End Dist. [in]
3	1-\#4	0	1-\#4	6	1-\#4	12	1-\#4	12	1-\#4	12
4	1-\#4	0	1-\#4	12	1-\#4	18	1-\#4	18	1-\#4	18
6	1-\#4	6	1-\#4	24	1-\#5	30	1-\#5	30	1-\#6	30
8	1-\#4	18	1-\#5	36	1-\#6	42	1-\#7 \#	42		
10	1-\#4	30	1-\#6	48						
12	1-\#5	42	$1-\# 7 *$	60						
14	1-\#6	54								

Assumptions:

6" bearing on each side
\#3 Stirrups @ 6 in. o.c. - As needed
Max 2 stories (1 structural floor and roof)
$¥$ Can be substituted for 1-\#5 + 1-\#6
\# Can be substituted for 2-\#5
\ddagger These are service level or working loads

$f^{\prime}=$	3000	psi	Concrete
$f_{y}=$	60	ksi	Rebar
$f_{y}=$	40	ksi	Stirrups
$h=16$ in			
$b=4$ in			

BUILDBLOCK ${ }^{\ominus}$ BUILDING SYSTEMS U.S. ENGINEERING TABLES

HIGH WIND LOAD LINTEL TABLES FOR 4" ICF LINTELS

Reinforcement In 4" Thick, 24" High Concrete Lintel FBC 2004/ACI 318-05

Opening Width [ft]	Uniformly Distributed Load [lb/ft] ${ }^{\ddagger}$									
	350		850		1350		1850		2350	
	Bottom Steel	Stirrup End Dist. [in]	Bottom Steel	Stirrup End Dist. [in]	Bottom Steel	Stirrup End Dist. [in]	Bottom Steel	Stirrup End Dist. [in]	Bottom Steel	Stirrup End Dist. [in]
3	1-\#4	0	1-\#4	0	1-\#4	6	1-\#4	6	1-\#4	12
4	1-\#4	0	1-\#4	0	1-\#4	12	1-\#4	12	1-\#4	18
6	1-\#4	0	1-\#4	12	1-\#4	24	1-\#5	24	1-\#5	30
8	1-\#4	0	1-\#4	24	1-\#5	36	1-\#6	36	1-\#6	42
10	1-\#4	12	1-\#5	36	1-\#6	48	1-\#7	48	1-\#8	54
12	1-\#5	24	1-\#6	48	1-\#7	60	1-\#8	60		
14	1-\#5	36	1-\#7	60	1-\#8	72				
16	1-\#5	48	1-\#8	72						
18	1-\#6	60	1-\#8	84						
20	1-\#6	72								

Assumptions:

6 " bearing on each side
\#3 Stirrups @ 6 in. o.c. - As needed

$\mathrm{f}_{\mathrm{c}}=$	3000	psi	Concrete
$\mathrm{f}_{\mathrm{y}}=$	60	ksi	Rebar
$\mathrm{f}_{\mathrm{y}}=$	40	ksi	Stirrups

Max 2 stories (1 structural floor and roof)
$\mathrm{h}=24$ in
1-\#7 can be substituted for 2-\#5
1-\#8 can be substituted for 2-\#6
b=4 in
\ddagger These are service level or working loads

BUILDBLOCK ${ }^{\odot}$ BUILDING SYSTEMS U.S. ENGINEERING TABLES

HIGH WIND LOAD LINTEL TABLES FOR 4" ICF LINTELS

Reinforcement In 4" Thick, 32" High Concrete Lintel FBC 2004/ACI 318-05

Opening Width [ft]	Uniformly Distributed Load [lb/ft ${ }^{\ddagger}$									
	350		850		1350		1850		2350	
	Bottom Steel	Stirrup End Dist. [in]	Bottom Steel	Stirrup End Dist. [in]	$\left\|\begin{array}{c} \text { Bottom } \\ \text { Steel } \\ {\left[i^{\wedge}\right]} \end{array}\right\|$	Stirrup End Dist. [in]	Bottom Steel	Stirrup End Dist. [in]	Bottom Steel	Stirrup End Dist. [in]
3	1-\#4	0	1-\#4	0	1-\#4	0	1-\#4	0	1-\#4	6
4	1-\#4	0	1-\#4	0	1-\#4	0	1-\#4	6	1-\#4	12
6	1-\#4	0	1-\#4	0	1-\#4	12	1-\#4	18	1-\#5	24
8	1-\#4	0	1-\#4	12	1-\#5	24	1-\#5	30	1-\#6	36
10	1-\#4	0	1-\#5	24	1-\#6	36	1-\#6	42	1-\#6	48
12	1-\#4	0	1-\#6	36	1-\#6	48	1-\#7	54	1-\#8	60
14	1-\#5	12	1-\#6	48	1-\#7	60	1-\#8	66		
16	1-\#5	24	1-\#6	60	1-\#8	72				
18	1-\#6	36	1-\#7	72						
20	1-\#6	48	1-\#8	84						

Assumptions:

6" bearing on each side

$\mathrm{f}_{\mathrm{c}}=$	3000	psi	Concrete
$\mathrm{f}_{\mathrm{y}}=$	60	ksi	Rebar
$\mathrm{f}_{\mathrm{y}}=$	40	ksi	Stirrups

Max 2 stories (1 structural floor and roof)
$h=32$ in
1-\#7 can be substituted for 2-\#5
b=4 in
1-\#8 can be substituted for 2-\#6
\ddagger These are service level or working loads

Reinforcement In 4" Thick, 32" High Concrete Lintel

TABLE NUMBER
1-E

BUILDBLOCK ${ }^{\ominus}$ BUILDING SYSTEMS

MIN．6＂BEARING

[^0]24＂MINIMUM
DISTANCE
－MAY WRAP
90 DEGREES
DOOR
OPENING
24＂MINIMUM

ધヨHOIH ヨHค ‘aヨSก ヨy S

TOP STEEL－\＃5 TYPICAL
BOTTOM STEEL－SIZE VARIES

[^0]:

 VERTICAL REINFORCEMENT－MIN．2－\＃4
 EXTENDING TO TOP OF WALL

